Convex Optimization Strategies for Coordinating Large-Scale Robot Formations

This paper investigates convex optimization strategies for coordinating a large-scale team of fully actuated mobile robots. Our primary motivation is both algorithm scalability as well as real-time performance. To accomplish this, we employ a formal definition from shape analysis for formation representation and repose the motion planning problem to one of changing (or maintaining) the shape of the formation. We then show that optimal solutions, minimizing either the total distance or minimax distance the nodes must travel, can be achieved through second-order cone programming techniques. We further prove a theoretical complexity for the shape problem of O(m1.5) as well as O(m) complexity in practice, where m denotes the number of robots in the shape configuration. Solutions for large-scale teams (1000's of robots) can be calculated in real time on a standard desktop PC. Extensions integrating both workspace and vehicle motion constraints are also presented with similar complexity bounds. We expect these results can be generalized for additional motion planning tasks, and will prove useful for improving the performance and extending the mission lives of large-scale robot formations as well as mobile ad hoc networks.

[1]  Calin Belta,et al.  Abstraction and control for Groups of robots , 2004, IEEE Transactions on Robotics.

[2]  M. Graef,et al.  The equivalent ellipsoid of a magnetized body , 2006 .

[3]  David G. Kendall,et al.  Shape & Shape Theory , 1999 .

[4]  Michaël Gauthier,et al.  An electromagnetic micromanipulation system for single-cell manipulation , 2002 .

[5]  John R. Spletzer,et al.  Second-Order Cone Programming (SOCP) Techniques for Coordinating Large-Scale Robot Teams in Polygonal Environments , 2007 .

[6]  K. Mardia,et al.  Statistical Shape Analysis , 1998 .

[7]  Fumin Zhang,et al.  Control of small formations using shape coordinates , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[8]  Calin Belta,et al.  Discrete abstractions for robot motion planning and control in polygonal environments , 2005, IEEE Transactions on Robotics.

[9]  Eric H. Maslen,et al.  Optimal realization of arbitrary forces in a magnetic stereotaxis system , 1996 .

[10]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[11]  Naomi Ehrich Leonard,et al.  Vehicle networks for gradient descent in a sampled environment , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[12]  Vijay R. Kumar,et al.  Optimal Motion Generation for Groups of Robots: A Geometric Approach , 2004 .

[13]  Mir Behrad Khamesee,et al.  Design and control of a microrobotic system using magnetic levitation , 2002 .

[14]  William C. Broaddus,et al.  MAGNETIC MANIPULATION INSTRUMENTATION FOR MEDICAL PHYSICS RESEARCH , 1994 .

[15]  P. Zweifel,et al.  A torque magnetometer for measurements of the high-field anisotropy of rocks and crystals , 1994 .

[16]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1998, IEEE Trans. Robotics Autom..

[17]  S. Sitharama Iyengar,et al.  A Fast Algorithm For The Point Pattern Matching Problem , 1999 .

[18]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[19]  Simon Parsons,et al.  Principles of Robot Motion: Theory, Algorithms and Implementations by Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia E. Kavraki and Sebastian Thrun, 603 pp., $60.00, ISBN 0-262-033275 , 2007, The Knowledge Engineering Review.

[20]  T. K. Carne,et al.  Shape and Shape Theory , 1999 .

[21]  M. P. Kummer,et al.  A Magnetically Controlled Wireless Optical Oxygen Sensor for Intraocular Measurements , 2008, IEEE Sensors Journal.

[22]  J. Osborn Demagnetizing Factors of the General Ellipsoid , 1945 .

[23]  Bernard Yurke,et al.  A magnetic manipulator for studying local rheology and micromechanical properties of biological systems , 1996 .

[24]  Stephen P. Boyd,et al.  Applications of second-order cone programming , 1998 .

[25]  J. Derenick,et al.  Optimal Shape Changes for Robot Teams , 2006 .

[26]  Jie Yu,et al.  Unconstrained receding-horizon control of nonlinear systems , 2001, IEEE Trans. Autom. Control..

[27]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[28]  Z. Li,et al.  A fast expected time algorithm for the 2-D point pattern matching problem , 2004, Pattern Recognit..

[29]  Bradley J. Nelson,et al.  Modeling and Control of Untethered Biomicrorobots in a Fluidic Environment Using Electromagnetic Fields , 2006, Int. J. Robotics Res..

[30]  William H. Press,et al.  Numerical recipes in C , 2002 .

[31]  Camillo J. Taylor,et al.  A vision-based formation control framework , 2002, IEEE Trans. Robotics Autom..

[32]  K. Arai,et al.  Spiral-type micro-machine for medical applications , 2000, MHS2000. Proceedings of 2000 International Symposium on Micromechatronics and Human Science (Cat. No.00TH8530).

[33]  Pramod K. Varshney,et al.  Energy-efficient deployment of Intelligent Mobile sensor networks , 2005, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[34]  H. Kuhn The Hungarian method for the assignment problem , 1955 .

[35]  Gaurav S. Sukhatme,et al.  An Incremental Self-Deployment Algorithm for Mobile Sensor Networks , 2002, Auton. Robots.

[36]  John R. Spletzer,et al.  Efficient Motion Planning Strategies for Large-Scale Sensor Networks , 2006, WAFR.

[37]  Rafael B. Fierro,et al.  Optimal Positioning Strategies for Shape Changes in Robot Teams , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[38]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[39]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.