Theoretical filtering of RLT bound-factor constraints for solving polynomial programming problems to global optimality

In this paper, we propose two sets of theoretically filtered bound-factor constraints for constructing reformulation-linearization technique (RLT)-based linear programming (LP) relaxations for solving polynomial programming problems. We establish related theoretical results for convergence to a global optimum for these reduced sized relaxations, and provide insights into their relative sizes and tightness. Extensive computational results are provided to demonstrate the relative effectiveness of the proposed theoretical filtering strategies in comparison to the standard RLT and a prior heuristic filtering technique using problems from the literature as well as randomly generated test cases.

[1]  Kurt M. Anstreicher,et al.  Institute for Mathematical Physics Semidefinite Programming versus the Reformulation–linearization Technique for Nonconvex Quadratically Constrained Quadratic Programming Semidefinite Programming versus the Reformulation-linearization Technique for Nonconvex Quadratically Constrained , 2022 .

[2]  Masakazu Muramatsu,et al.  SparsePOP: a Sparse Semidefinite Programming Relaxation of Polynomial Optimization Problems , 2005 .

[3]  C. A. Haverly Studies of the behavior of recursion for the pooling problem , 1978, SMAP.

[4]  Hanif D. Sherali,et al.  Reduced RLT representations for nonconvex polynomial programming problems , 2012, J. Glob. Optim..

[5]  Hanif D. Sherali,et al.  New reformulation linearization/convexification relaxations for univariate and multivariate polynomial programming problems , 1997, Oper. Res. Lett..

[6]  Klaus Schittkowski,et al.  Test examples for nonlinear programming codes , 1980 .

[7]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[8]  Hanif D. Sherali,et al.  Global optimization of nonconvex factorable programming problems , 2001, Math. Program..

[9]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[10]  Hanif D. Sherali,et al.  CONVEX ENVELOPES OF MULTILINEAR FUNCTIONS OVER A UNIT HYPERCUBE AND OVER SPECIAL DISCRETE SETS , 1997 .

[11]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[12]  Jean B. Lasserre,et al.  Convergent SDP-Relaxations in Polynomial Optimization with Sparsity , 2006, SIAM J. Optim..

[13]  Garth P. McCormick,et al.  Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems , 1976, Math. Program..

[14]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[15]  Anatoliy D. Rikun,et al.  A Convex Envelope Formula for Multilinear Functions , 1997, J. Glob. Optim..

[16]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[17]  N. Shor Dual quadratic estimates in polynomial and Boolean programming , 1991 .

[18]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[19]  Leo Liberti Linearity Embedded in Nonconvex Programs , 2005, J. Glob. Optim..

[20]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[21]  Nikolaos V. Sahinidis,et al.  A polyhedral branch-and-cut approach to global optimization , 2005, Math. Program..

[22]  Pierre Hansen,et al.  Compact Relaxations for Polynomial Programming Problems , 2012, SEA.

[23]  James E. Falk,et al.  Jointly Constrained Biconvex Programming , 1983, Math. Oper. Res..

[24]  Paluri S. V. Nataraj,et al.  Constrained global optimization of multivariate polynomials using Bernstein branch and prune algorithm , 2011, J. Glob. Optim..

[25]  Martin Berggren,et al.  Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.

[26]  Hanif D. Sherali,et al.  Combined bound-grid-factor constraints for enhancing RLT relaxations for polynomial programs , 2011, J. Glob. Optim..

[27]  Nikolaos V. Sahinidis,et al.  Multiterm polyhedral relaxations for nonconvex, quadratically constrained quadratic programs , 2009, Optim. Methods Softw..

[28]  Hanif D. Sherali,et al.  Enhancing RLT-based relaxations for polynomial programming problems via a new class of v-semidefinite cuts , 2012, Comput. Optim. Appl..

[29]  Hanif D. Sherali,et al.  Enhancing RLT relaxations via a new class of semidefinite cuts , 2002, J. Glob. Optim..

[30]  Hanif D. Sherali,et al.  A global optimization algorithm for polynomial programming problems using a Reformulation-Linearization Technique , 1992, J. Glob. Optim..

[31]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..

[32]  Leo Liberti,et al.  An Exact Reformulation Algorithm for Large Nonconvex NLPs Involving Bilinear Terms , 2006, J. Glob. Optim..

[33]  Warren P. Adams,et al.  A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems , 1998 .

[34]  N. Sahinidis,et al.  Global optimization of nonconvex NLPs and MINLPs with applications in process design , 1995 .