Temporal sampling issues in discrete nonlinear filtering

One of the most commonly used tools in systems science is that of nonlinear filtering. Applications can be found in control engineering, telecommunications, radar tracking, environmental systems, economics and many other areas. The goal of this paper is to contribute to the application of nonlinear filtering theory by presenting insights into the role of temporal sampling especially the use of up-sampling and down-sampling.

[1]  H. Kushner On the Differential Equations Satisfied by Conditional Probablitity Densities of Markov Processes, with Applications , 1964 .

[2]  Tyrone E. Duncan,et al.  Likelihood Functions for Stochastic Signals in White Noise , 1970, Inf. Control..

[3]  H. Kushner Dynamical equations for optimal nonlinear filtering , 1967 .

[4]  Československá akademie věd,et al.  Transactions of the Fourth Prague Conference on Information Theory, Statistical Decision Functions, Random Processes, held at Prague, from 31st August to 11th September 1965 , 1967 .

[5]  M G Cea,et al.  A discrete nonlinear filter for fast sampled problems based on vector quantization , 2010, Proceedings of the 2010 American Control Conference.

[6]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[7]  Graham C. Goodwin,et al.  Sampling and sampled-data models , 2010, Proceedings of the 2010 American Control Conference.

[8]  U. Shaked,et al.  H∞ nonlinear filtering , 1996 .

[9]  Tyrone E. Duncan,et al.  On the Absolute Continuity of Measures , 1970 .

[10]  P. Suchomski,et al.  Numerical conditioning of delta-domain Lyapunov and Riccati equations , 2001 .

[11]  Graham C. Goodwin,et al.  A Novel Technique based on up-sampling for addressing Modeling Issues in Sampled Data Nonlinear Filtering , 2011 .

[12]  G. Milstein Numerical Integration of Stochastic Differential Equations , 1994 .

[13]  Jaroslav Kožešnk,et al.  Information Theory, Statistical Decision Functions, Random Processes , 1962 .

[14]  Richard S Bucy LINEAR AND NONLINEAR FILTERING THEORY , 1965 .

[15]  G. Goodwin,et al.  Connection between continuous and discrete Riccati equations with applications to kalman filtering , 1988 .

[16]  M. Zakai On the optimal filtering of diffusion processes , 1969 .

[17]  G. Kitagawa Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State Space Models , 1996 .

[18]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[20]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[21]  W. Wonham Some applications of stochastic difierential equations to optimal nonlinear ltering , 1964 .

[22]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[23]  M. Naumović Sampling in Digital Signal Processing and Control , 2001 .

[24]  Graham C. Goodwin,et al.  Digital control and estimation : a unified approach , 1990 .

[25]  Jay H. Lee,et al.  Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.

[26]  H. Kunita,et al.  Stochastic differential equations for the non linear filtering problem , 1972 .

[27]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[28]  R. Mortensen Stochastic Optimal Control with Noisy Observations , 1966 .

[29]  G. Goodwin,et al.  High-speed digital signal processing and control , 1992, Proc. IEEE.

[30]  Graham C. Goodwin,et al.  Temporal and spatial quantization in nonlinear filtering , 2011, 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP).

[31]  Hugh F. Durrant-Whyte,et al.  A new method for the nonlinear transformation of means and covariances in filters and estimators , 2000, IEEE Trans. Autom. Control..

[32]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[33]  Graham C. Goodwin,et al.  Event based sampling in non-linear filtering , 2012 .

[34]  T. Kailath,et al.  An innovations approach to least-squares estimation--Part II: Linear smoothing in additive white noise , 1968 .

[35]  Graham C. Goodwin,et al.  State and parameter estimation via minimum distortion filtering with application to Chemical Process Control , 2011, 2011 International Symposium on Advanced Control of Industrial Processes (ADCONIP).

[36]  Jeffrey K. Uhlmann,et al.  Unscented filtering and nonlinear estimation , 2004, Proceedings of the IEEE.

[37]  R. L. Stratonovich CONDITIONAL MARKOV PROCESSES , 1960 .

[38]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[39]  Graham C. Goodwin,et al.  Variance or spectral density in sampled data filtering? , 2012, J. Glob. Optim..

[40]  M G Cea,et al.  Rapprochement between discrete and continuous nonlinear filtering , 2010, Proceedings of the 2010 American Control Conference.

[41]  Jay H. Lee,et al.  Constrained linear state estimation - a moving horizon approach , 2001, Autom..

[42]  E. K. Gatcombe Discussion: “The Measurement of Oil-Film Thickness in Gear Teeth” (MacConochie, I. O., and Cameron, A., 1960, ASME J. Basic Eng., 82, pp. 29–34) , 1960 .

[43]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..