Monte Carlo Sampling Methods

[1]  Alexander Shapiro,et al.  The Sample Average Approximation Method Applied to Stochastic Routing Problems: A Computational Study , 2003, Comput. Optim. Appl..

[2]  Alexander Shapiro,et al.  Conditioning of convex piecewise linear stochastic programs , 2002, Math. Program..

[3]  Alexander Shapiro,et al.  The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..

[4]  A. Shapiro,et al.  The Sample Average Approximation Method for Stochastic Programs with Integer Recourse , 2002 .

[5]  A. Shapiro Statistical inference of multistage stochastic programming problems , 2001 .

[6]  Chun-Hung Chen,et al.  Convergence Properties of Two-Stage Stochastic Programming , 2000 .

[7]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[8]  Alexander Shapiro,et al.  On the Rate of Convergence of Optimal Solutions of Monte Carlo Approximations of Stochastic Programs , 2000, SIAM J. Optim..

[9]  P. A. Jensen,et al.  Response surface analysis of two‐stage stochastic linear programming with recourse , 1999 .

[10]  Gül Gürkan,et al.  Sample-path solution of stochastic variational inequalities , 1999, Math. Program..

[11]  David P. Morton,et al.  Monte Carlo bounding techniques for determining solution quality in stochastic programs , 1999, Oper. Res. Lett..

[12]  Georg Ch. Pflug,et al.  A branch and bound method for stochastic global optimization , 1998, Math. Program..

[13]  Alexander Shapiro,et al.  A simulation-based approach to two-stage stochastic programming with recourse , 1998, Math. Program..

[14]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[15]  Julia L. Higle,et al.  Variance Reduction and Objective Function Evaluation in Stochastic Linear Programs , 1998, INFORMS J. Comput..

[16]  Georg Ch. Pflug,et al.  On the Glivenko-Cantelli Problem in Stochastic Programming: Linear Recourse and Extensions , 1996, Math. Oper. Res..

[17]  A. Shapiro,et al.  On rate of convergence of Monte Carlo approximations of stochastic programs , 1998 .

[18]  Ronald L. Wasserstein,et al.  Monte Carlo: Concepts, Algorithms, and Applications , 1997 .

[19]  Stephen M. Robinson,et al.  Sample-path optimization of convex stochastic performance functions , 1996, Math. Program..

[20]  Julia L. Higle,et al.  Duality and statistical tests of optimality for two stage stochastic programs , 1996, Math. Program..

[21]  Stephen M. Robinson,et al.  Analysis of Sample-Path Optimization , 1996, Math. Oper. Res..

[22]  James R. Wilson,et al.  Integrated Variance Reduction Strategies for Simulation , 1996, Oper. Res..

[23]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[24]  Julia L. Higle,et al.  Stochastic Decomposition: A Statistical Method for Large Scale Stochastic Linear Programming , 1996 .

[25]  A. Shapiro Simulation-based optimization—convergence analysis and statistical inference , 1996 .

[26]  Roger J.-B. Wets,et al.  Probabilistic bounds (via large deviations) for the solutions of stochastic programming problems , 1995, Ann. Oper. Res..

[27]  Jason H. Goodfriend,et al.  Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization by the Score Function Method , 1995 .

[28]  P. Glynn,et al.  Stochastic Optimization by Simulation: Convergence Proofs for the GI/G/1 Queue in Steady-State , 1994 .

[29]  E. Chong,et al.  Optimization of queues using an infinitesimal perturbation analysis-based stochastic algorithm with general update times , 1993 .

[30]  G. Infanger,et al.  Planning under uncertainty solving large-scale stochastic linear programs , 1992 .

[31]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[32]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[33]  Alexander Shapiro,et al.  Asymptotic analysis of stochastic programs , 1991, Ann. Oper. Res..

[34]  G. Dantzig,et al.  Large-Scale Stochastic Linear Programs: Importance Sampling and Benders Decomposition , 1991 .

[35]  Xi-Ren Cao,et al.  Perturbation analysis of discrete event dynamic systems , 1991 .

[36]  R. Wets,et al.  Epi‐consistency of convex stochastic programs , 1991 .

[37]  Paul Glasserman,et al.  Gradient Estimation Via Perturbation Analysis , 1990 .

[38]  R. Rubinstein,et al.  Optimization of static simulation models by the score function method , 1990 .

[39]  J. Dupacová,et al.  ASYMPTOTIC BEHAVIOR OF STATISTICAL ESTIMATORS AND OF OPTIMAL SOLUTIONS OF STOCHASTIC OPTIMIZATION PROBLEMS , 1988 .

[40]  Y. Ermoliev Stochastic quasigradient methods and their application to system optimization , 1983 .

[41]  S. M. Robinson Generalized equations and their solutions, part II: Applications to nonlinear programming , 1982 .

[42]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[43]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[44]  Mikhail Borisovich Nevelʹson,et al.  Stochastic Approximation and Recursive Estimation , 1976 .

[45]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[46]  A. Wald Note on the Consistency of the Maximum Likelihood Estimate , 1949 .