PDBe: improved accessibility of macromolecular structure data from PDB and EMDB

The Protein Data Bank in Europe (http://pdbe.org) accepts and annotates depositions of macromolecular structure data in the PDB and EMDB archives and enriches, integrates and disseminates structural information in a variety of ways. The PDBe website has been redesigned based on an analysis of user requirements, and now offers intuitive access to improved and value-added macromolecular structure information. Unique value-added information includes lists of reviews and research articles that cite or mention PDB entries as well as access to figures and legends from full-text open-access publications that describe PDB entries. A powerful new query system not only shows all the PDB entries that match a given query, but also shows the ‘best structures’ for a given macromolecule, ligand complex or sequence family using data-quality information from the wwPDB validation reports. A PDBe RESTful API has been developed to provide unified access to macromolecular structure data available in the PDB and EMDB archives as well as value-added annotations, e.g. regarding structure quality and up-to-date cross-reference information from the SIFTS resource. Taken together, these new developments facilitate unified access to macromolecular structure data in an intuitive way for non-expert users and support expert users in analysing macromolecular structure data.

[1]  Shu-Ling Lai,et al.  (4Z)-4-[(2,6-Diisopropylanilino)(phenyl)methylidene]-3-methyl-1-phenyl-1H-pyrazol-5(4H)-one , 2011, Acta crystallographica. Section E, Structure reports online.

[2]  M. Perutz,et al.  Structure of Hæmoglobin: A Three-Dimensional Fourier Synthesis at 5.5-Å. Resolution, Obtained by X-Ray Analysis , 1960, Nature.

[3]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[4]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[5]  Rachael P. Huntley,et al.  The UniProt-GO Annotation database in 2011 , 2011, Nucleic Acids Res..

[6]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[7]  The Uniprot Consortium,et al.  UniProt: a hub for protein information , 2014, Nucleic Acids Res..

[8]  Gerard J Kleywegt,et al.  Vivaldi: Visualization and validation of biomacromolecular NMR structures from the PDB , 2012, Proteins.

[9]  David A. Lee,et al.  CATH: comprehensive structural and functional annotations for genome sequences , 2014, Nucleic Acids Res..

[10]  M. Perutz,et al.  Structure of haemoglobin: a three-dimensional Fourier synthesis at 5.5-A. resolution, obtained by X-ray analysis. , 1960, Nature.

[11]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[12]  Thomas A Steitz,et al.  Structural insights into the roles of water and the 2' hydroxyl of the P site tRNA in the peptidyl transferase reaction. , 2005, Molecular cell.

[13]  K Henrick,et al.  Electronic Reprint Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions Biological Crystallography Secondary-structure Matching (ssm), a New Tool for Fast Protein Structure Alignment in Three Dimensions , 2022 .

[14]  David Baker,et al.  A Computationally Designed Inhibitor of an Epstein-Barr Viral Bcl-2 Protein Induces Apoptosis in Infected Cells , 2014, Cell.

[15]  K. Henrick,et al.  New electron microscopy database and deposition system. , 2002, Trends in biochemical sciences.

[16]  Akira R. Kinjo,et al.  Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format , 2011, Nucleic Acids Res..

[17]  R. Fraser The structure of deoxyribose nucleic acid. , 2004, Journal of structural biology.

[18]  G. Hong,et al.  Nucleic Acids Research , 2015, Nucleic Acids Research.

[19]  R. Franklin,et al.  Molecular Configuration in Sodium Thymonucleate , 1953, Nature.

[20]  Geoffrey J. Barton,et al.  Jalview Version 2—a multiple sequence alignment editor and analysis workbench , 2009, Bioinform..

[21]  Sameer Velankar,et al.  PDBe: Protein Data Bank in Europe , 2009, Nucleic Acids Res..

[22]  Ruben Abagyan Computational chemistry in 25 years , 2011, Journal of Computer-Aided Molecular Design.

[23]  Haruki Nakamura,et al.  Remediation of the protein data bank archive , 2007, Nucleic Acids Res..

[24]  Adel Golovin,et al.  MSDmotif: exploring protein sites and motifs , 2008, BMC Bioinformatics.

[25]  Zukang Feng,et al.  Improving the representation of peptide-like inhibitor and antibiotic molecules in the Protein Data Bank , 2014, Biopolymers.

[26]  F. Crick,et al.  Molecular Structure of Nucleic Acids: A Structure for Deoxyribose Nucleic Acid , 1953, Nature.

[27]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[28]  Sameer Velankar,et al.  The Protein Data Bank in Europe (PDBe): bringing structure to biology , 2011, Acta crystallographica. Section D, Biological crystallography.

[29]  J M Thornton,et al.  LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. , 1995, Protein engineering.

[30]  Alessandro Vullo,et al.  Ensembl 2015 , 2014, Nucleic Acids Res..

[31]  Sameer Velankar,et al.  Implementing an X-ray validation pipeline for the Protein Data Bank , 2012, Acta crystallographica. Section D, Biological crystallography.

[32]  John D. Westbrook,et al.  EMDataBank.org: unified data resource for CryoEM , 2010, Nucleic Acids Res..

[33]  Karel Berka,et al.  PDBsum additions , 2013, Nucleic Acids Res..

[34]  A. Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP)—round IX , 2011, Proteins.

[35]  Maria Jesus Martin,et al.  SIFTS: Structure Integration with Function, Taxonomy and Sequences resource , 2012, Nucleic Acids Res..

[36]  Rolf Apweiler,et al.  IntEnz, the integrated relational enzyme database , 2004, Nucleic Acids Res..

[37]  David S. Goodsell,et al.  The RCSB Protein Data Bank: views of structural biology for basic and applied research and education , 2014, Nucleic Acids Res..

[38]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[39]  Michael J. Hartshorn,et al.  AstexViewerTM †: a visualisation aid for structure-based drug design , 2002, J. Comput. Aided Mol. Des..

[40]  Antje Chang,et al.  BRENDA in 2015: exciting developments in its 25th year of existence , 2014, Nucleic Acids Res..

[41]  Tao Wang,et al.  Advances in Computational Structure-Based Drug Design and Application in Drug Discovery. , 2015, Current topics in medicinal chemistry.

[42]  Randy J. Read,et al.  A New Generation of Crystallographic Validation Tools for the Protein Data Bank , 2011, Structure.

[43]  Anna Tramontano,et al.  Critical assessment of methods of protein structure prediction (CASP) — round x , 2014, Proteins.

[44]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[45]  S. Bryant,et al.  Critical assessment of methods of protein structure prediction (CASP): Round II , 1997, Proteins.

[46]  Alexey G. Murzin,et al.  SCOP2 prototype: a new approach to protein structure mining , 2014, Nucleic Acids Res..

[47]  Dimitris Dimitropoulos,et al.  Using MSDchem to search the PDB ligand dictionary. , 2006, Current protocols in bioinformatics.

[48]  H. R. Wilson,et al.  Molecular structure of deoxypentose nucleic acids. , 1953, Nature.

[49]  George Papadatos,et al.  The ChEMBL bioactivity database: an update , 2013, Nucleic Acids Res..

[50]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[51]  Philip E. Bourne,et al.  Achievements and challenges in structural bioinformatics and computational biophysics , 2014, Bioinform..

[52]  Michael J Hartshorn,et al.  AstexViewer: a visualisation aid for structure-based drug design. , 2002, Journal of computer-aided molecular design.

[53]  David S. Tourigny,et al.  Elongation Factor G Bound to the Ribosome in an Intermediate State of Translocation , 2013, Science.

[54]  M. Burghammer,et al.  Crystal structure of the human β2 adrenergic G-protein-coupled receptor , 2007, Nature.

[55]  Huaiyu Mi,et al.  The InterPro protein families database: the classification resource after 15 years , 2014, Nucleic Acids Res..

[56]  F. Crick,et al.  Molecular structure of nucleic acids , 2004, JAMA.

[57]  E. Birney,et al.  Pfam: the protein families database , 2013, Nucleic Acids Res..

[58]  María Martín,et al.  UniProt: A hub for protein information , 2015 .

[59]  David Croft,et al.  Building models using Reactome pathways as templates. , 2013, Methods in molecular biology.

[60]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..