Quantitative FRET studies and integrative modeling unravel the structure and dynamics of biomolecular systems.

Förster Resonance Energy Transfer (FRET) combined with single-molecule spectroscopy probes macromolecular structure and dynamics and identifies coexisting conformational states. We review recent methodological developments in integrative structural modeling by satisfying spatial restraints on networks of FRET pairs (hybrid-FRET). We discuss procedures to incorporate prior structural knowledge and to obtain optimal distance networks. Finally, a workflow for hybrid-FRET is presented that automates integrative structural modeling and experiment planning to put hybrid-FRET on rails. To test this workflow, we simulate realistic single-molecule experiments and resolve three protein conformers, exchanging at 30μs and 10ms, with accuracies of 1-3Å RMSD versus the target structure. Incorporation of data from other spectroscopies and imaging is also discussed.

[1]  Christoph Bräuchle,et al.  Pulsed interleaved excitation. , 2005, Biophysical journal.

[2]  C. Seidel,et al.  Accurate single-molecule FRET studies using multiparameter fluorescence detection. , 2010, Methods in enzymology.

[3]  Jerker Widengren,et al.  STED microscopy - towards broadened use and scope of applications. , 2014, Current opinion in chemical biology.

[4]  Suren Felekyan,et al.  Detection of structural dynamics by FRET: a photon distribution and fluorescence lifetime analysis of systems with multiple states. , 2010, The journal of physical chemistry. B.

[5]  H. P. Lu,et al.  Sizing up single-molecule enzymatic conformational dynamics. , 2014, Chemical Society reviews.

[6]  Axel T. Brunger,et al.  Single-molecule FRET-derived model of the synaptotagmin 1–SNARE fusion complex , 2010, Nature Structural &Molecular Biology.

[7]  Kevin J. McHale,et al.  Single-Molecule Fluorescence Experiments Determine Protein Folding Transition Path Times , 2012, Science.

[8]  G. Molander,et al.  Determining the scope of the lanthanide mediated, sequential hydroamination/C–C cyclization reaction: formation of tricyclic and tetracyclic aromatic nitrogen heterocycles , 2003 .

[9]  Jens Michaelis,et al.  Application of the nano-positioning system to the analysis of fluorescence resonance energy transfer networks. , 2011, The journal of physical chemistry. B.

[10]  J Michaelis,et al.  Quantitative structural information from single-molecule FRET. , 2015, Faraday discussions.

[11]  W. Webb,et al.  Mechanisms of quenching of Alexa fluorophores by natural amino acids. , 2010, Journal of the American Chemical Society.

[12]  Suren Felekyan,et al.  Probability distribution analysis of single-molecule fluorescence anisotropy and resonance energy transfer. , 2007, The journal of physical chemistry. B.

[13]  X. Zhuang,et al.  Correlating Structural Dynamics and Function in Single Ribozyme Molecules , 2002, Science.

[14]  J. Enderlein,et al.  Fluorescence correlation spectroscopy as a tool for measuring the rotational diffusion of macromolecules , 2011 .

[15]  C. Seidel,et al.  Full correlation from picoseconds to seconds by time-resolved and time-correlated single photon detection , 2005 .

[16]  A. Sali,et al.  Structural Model of the Bilitranslocase Transmembrane Domain Supported by NMR and FRET Data , 2015, PloS one.

[17]  S. Ebbinghaus,et al.  RNA Hairpin Folding in the Crowded Cell , 2016, Angewandte Chemie.

[18]  A. Barducci,et al.  Single-molecule spectroscopy reveals chaperone-mediated expansion of substrate protein , 2014, Proceedings of the National Academy of Sciences.

[19]  Simón Poblete,et al.  Inter-Dye Distance Distributions Studied by a Combination of Single-Molecule FRET-Filtered Lifetime Measurements and a Weighted Accessible Volume (wAV) Algorithm , 2014, Molecules.

[20]  H. Chung,et al.  Fast single-molecule FRET spectroscopy: theory and experiment. , 2014, Physical chemistry chemical physics : PCCP.

[21]  K. Weninger,et al.  Optimizing methods to recover absolute FRET efficiency from immobilized single molecules. , 2010, Biophysical journal.

[22]  Benjamin Schuler,et al.  Ultrafast dynamics of protein collapse from single-molecule photon statistics , 2007, Proceedings of the National Academy of Sciences.

[23]  Peter D. Kwong,et al.  Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions , 2014, Science.

[24]  Benjamin Schuler,et al.  Comprehensive structural and dynamical view of an unfolded protein from the combination of single-molecule FRET, NMR, and SAXS , 2016, Proceedings of the National Academy of Sciences.

[25]  M. Levitus,et al.  Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments , 2010, Quarterly Reviews of Biophysics.

[26]  S. Weiss Fluorescence spectroscopy of single biomolecules. , 1999, Science.

[27]  H. Al‐Hashimi,et al.  RNA dynamics: it is about time. , 2008, Current opinion in structural biology.

[28]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[29]  Suren Felekyan,et al.  Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. , 2006, The journal of physical chemistry. B.

[30]  H. Steinhoff,et al.  Simulation vs. Reality: A Comparison of In Silico Distance Predictions with DEER and FRET Measurements , 2012, PloS one.

[31]  Th. Förster,et al.  Experimentelle und theoretische Untersuchung des zwischenmolekularen Übergangs von Elektronenanregungsenergie , 1949 .

[32]  Michael Börsch,et al.  Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase , 2004, Nature Structural &Molecular Biology.

[33]  Lila M. Gierasch,et al.  Sending Signals Dynamically , 2009, Science.

[34]  F. Noé,et al.  Complex RNA Folding Kinetics Revealed by Single-Molecule FRET and Hidden Markov Models , 2014, Journal of the American Chemical Society.

[35]  Oliver Brock,et al.  Blind testing of cross‐linking/mass spectrometry hybrid methods in CASP11 , 2016, Proteins.

[36]  Jens Michaelis,et al.  A nano-positioning system for macromolecular structural analysis , 2008, Nature Methods.

[37]  C. Seidel,et al.  Triphosphate induced dimerization of human guanylate binding protein 1 involves association of the C-terminal helices: a joint double electron-electron resonance and FRET study. , 2014, Biochemistry.

[38]  B. Albinsson,et al.  FRETmatrix: a general methodology for the simulation and analysis of FRET in nucleic acids , 2012, Nucleic acids research.

[39]  H. Grubmüller,et al.  Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1 , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Axel T Brunger,et al.  Three-dimensional molecular modeling with single molecule FRET. , 2011, Journal of structural biology.

[41]  C. Seidel,et al.  Guanylate binding proteins directly attack Toxoplasma gondii via supramolecular complexes , 2016, eLife.

[42]  O. Schiemann,et al.  Determination of nitroxide spin label conformations via PELDOR and X-ray crystallography. , 2016, Physical chemistry chemical physics : PCCP.

[43]  Victoria Birkedal,et al.  Quantitative single molecule FRET efficiencies using TIRF microscopy. , 2015, Faraday discussions.

[44]  J. Elf,et al.  Probing Transcription Factor Dynamics at the Single-Molecule Level in a Living Cell , 2007, Science.

[45]  B. Schuler,et al.  Single-molecule spectroscopy of protein folding dynamics--expanding scope and timescales. , 2013, Current opinion in structural biology.

[46]  T. Ha,et al.  SSB protein diffusion on single-stranded DNA stimulates RecA filament formation , 2009, Nature.

[47]  D. Lilley,et al.  Orientation dependence in fluorescent energy transfer between Cy3 and Cy5 terminally attached to double-stranded nucleic acids , 2008, Proceedings of the National Academy of Sciences.

[48]  H. Gohlke,et al.  Multiscale modeling of macromolecular conformational changes combining concepts from rigidity and elastic network theory , 2006, Proteins.

[49]  D. Kern,et al.  Dynamic personalities of proteins , 2007, Nature.

[50]  M. DeWitt,et al.  Distance mapping in proteins using fluorescence spectroscopy: the tryptophan-induced quenching (TrIQ) method. , 2010, Biochemistry.

[51]  D. F. Ogletree,et al.  Probing the interaction between single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor , 1996, Summaries of Papers Presented at the Quantum Electronics and Laser Science Conference.

[52]  Gerhard Hummer,et al.  Solution structure of the ESCRT-I and -II supercomplex: implications for membrane budding and scission. , 2012, Structure.

[53]  Klaus Schulten,et al.  Discovery through the computational microscope. , 2009, Structure.

[54]  L. Kay,et al.  New Views of Functionally Dynamic Proteins by Solution NMR Spectroscopy. , 2016, Journal of molecular biology.

[55]  R. S. Goody,et al.  Multiparameter single-molecule fluorescence spectroscopy reveals heterogeneity of HIV-1 reverse transcriptase:primer/template complexes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[56]  Peter E. Wright,et al.  Modulation of allostery by protein intrinsic disorder , 2013, Nature.

[57]  A. Deniz,et al.  Shedding light on protein folding landscapes by single-molecule fluorescence. , 2014, Chemical Society reviews.

[58]  Sua Myong,et al.  Protein induced fluorescence enhancement (PIFE) for probing protein-nucleic acid interactions. , 2014, Chemical Society reviews.

[59]  J. Buchner,et al.  Dynamics of heat shock protein 90 C-terminal dimerization is an important part of its conformational cycle , 2010, Proceedings of the National Academy of Sciences.

[60]  R. R. Cheng,et al.  Quantifying internal friction in unfolded and intrinsically disordered proteins with single-molecule spectroscopy , 2012, Proceedings of the National Academy of Sciences.

[61]  L. Goldner,et al.  Indocyanine dyes approach free rotation at the 3' terminus of A-RNA: a comparison with the 5' terminus and consequences for fluorescence resonance energy transfer. , 2013, The journal of physical chemistry. B.

[62]  C. Herrmann,et al.  Protein stabilization by macromolecular crowding through enthalpy rather than entropy. , 2014, Journal of the American Chemical Society.

[63]  W. Zipfel,et al.  Structural basis for conformational switching and GTP loading of the large G protein atlastin , 2013, The EMBO journal.

[64]  H. Grubmüller,et al.  Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach , 2011, PloS one.

[65]  Gerhard Hummer,et al.  Solution structure of the ESCRT-I complex by small-angle X-ray scattering, EPR, and FRET spectroscopy , 2011, Proceedings of the National Academy of Sciences.

[66]  L. Stryer Fluorescence energy transfer as a spectroscopic ruler. , 1978, Annual review of biochemistry.

[67]  Timothy D Craggs,et al.  Alternating-laser excitation: single-molecule FRET and beyond. , 2014, Chemical Society reviews.

[68]  Danny Kowerko,et al.  BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data , 2013, PloS one.

[69]  G. Haran,et al.  Immobilization in Surface-Tethered Lipid Vesicles as a New Tool for Single Biomolecule Spectroscopy , 2001 .

[70]  Juergen Haas,et al.  The Protein Model Portal—a comprehensive resource for protein structure and model information , 2013, Database J. Biol. Databases Curation.

[71]  A. Szabó,et al.  Theory of photon statistics in single-molecule Förster resonance energy transfer. , 2005, The Journal of chemical physics.

[72]  Holger Gohlke,et al.  A Normal Mode-Based Geometric Simulation Approach for Exploring Biologically Relevant Conformational Transitions in Proteins , 2011, J. Chem. Inf. Model..

[73]  Massimiliano Bonomi,et al.  Determining Protein Complex Structures Based on a Bayesian Model of in Vivo Förster Resonance Energy Transfer (FRET) Data* , 2014, Molecular & Cellular Proteomics.

[74]  Jerker Widengren,et al.  Single-molecule detection and identification of multiple species by multiparameter fluorescence detection. , 2006, Analytical chemistry.

[75]  Michael Nilges,et al.  Materials and Methods Som Text Figs. S1 to S6 References Movies S1 to S5 Inferential Structure Determination , 2022 .

[76]  P. Tompa On the supertertiary structure of proteins. , 2012, Nature chemical biology.

[77]  Steven S. Vogel,et al.  Estimating the distance separating fluorescent protein FRET pairs. , 2014, Methods.

[78]  Johannes Hohlbein,et al.  Camera-based single-molecule FRET detection with improved time resolution. , 2015, Physical chemistry chemical physics : PCCP.

[79]  Volodymyr Kudryavtsev,et al.  Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[80]  Suren Felekyan,et al.  Real-time dynamics of peptide ligand–dependent receptor complex formation in planta , 2015, Science Signaling.

[81]  X. Xie,et al.  Protein Conformational Dynamics Probed by Single-Molecule Electron Transfer , 2003, Science.

[82]  D. Lilley,et al.  Fluorescence energy transfer shows that the four-way DNA junction is a right-handed cross of antiparallel molecules , 1989, Nature.

[83]  Jeremy C. Smith,et al.  Dynamical fingerprints for probing individual relaxation processes in biomolecular dynamics with simulations and kinetic experiments , 2011, Proceedings of the National Academy of Sciences.

[84]  C. Seidel,et al.  Moderation of Arabidopsis Root Stemness by CLAVATA1 and ARABIDOPSIS CRINKLY4 Receptor Kinase Complexes , 2013, Current Biology.

[85]  Daniel Müllner,et al.  fastcluster: Fast Hierarchical, Agglomerative Clustering Routines for R and Python , 2013 .

[86]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[87]  Andrej Sali,et al.  Uncertainty in integrative structural modeling. , 2014, Current opinion in structural biology.

[88]  Nicole C. Robb,et al.  Single-molecule FRET reveals the pre-initiation and initiation conformations of influenza virus promoter RNA , 2016, Nucleic acids research.

[89]  Haruki Nakamura,et al.  Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. , 2015, Structure.

[90]  Jens Michaelis,et al.  Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS , 2015, Nature Communications.

[91]  Haruki Nakamura,et al.  The archiving and dissemination of biological structure data. , 2016, Current opinion in structural biology.

[92]  K. Weninger,et al.  Detecting the conformation of individual proteins in live cells , 2010, Nature Methods.

[93]  G. Ziv,et al.  Single-molecule fluorescence spectroscopy maps the folding landscape of a large protein. , 2011, Nature communications.

[94]  Andreas Plückthun,et al.  Single-molecule spectroscopy of protein conformational dynamics in live eukaryotic cells , 2015, Nature Methods.

[95]  É. Lippmaa,et al.  Separation of the rotational contribution in fluorescence correlation experiments. , 1989, Biophysical journal.

[96]  L. M. Wilhelmsson,et al.  Advances in Quantitative FRET‐Based Methods for Studying Nucleic Acids , 2012, Chembiochem : a European journal of chemical biology.

[97]  Jennifer L. Knight,et al.  Structural Organization of Bacterial RNA Polymerase Holoenzyme and the RNA Polymerase-Promoter Open Complex , 2002, Cell.

[98]  Jerker Widengren,et al.  Two New Concepts to Measure Fluorescence Resonance Energy Transfer via Fluorescence Correlation Spectroscopy: Theory and Experimental Realizations , 2001 .

[99]  C. Seidel,et al.  Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy , 2014, Nature Communications.

[100]  R. Clegg Fluorescence resonance energy transfer and nucleic acids. , 1992, Methods in enzymology.

[101]  Stefan Van Aelst,et al.  Fast and robust bootstrap for multivariate inference: The R package FRB , 2013 .

[102]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[103]  Peter Dedecker,et al.  A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. , 2007, Journal of the American Chemical Society.

[104]  Helmut Grubmüller,et al.  Single-molecule FRET measures bends and kinks in DNA , 2008, Proceedings of the National Academy of Sciences.

[105]  Ralf Kühnemuth,et al.  Analyzing Förster resonance energy transfer with fluctuation algorithms. , 2013, Methods in enzymology.

[106]  Suren Felekyan,et al.  On the origin of broadening of single-molecule FRET efficiency distributions beyond shot noise limits. , 2010, The journal of physical chemistry. B.

[107]  Shimon Weiss,et al.  A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement–Förster-Type Resonance Energy Transfer (PIFE-FRET) , 2016, The journal of physical chemistry. B.

[108]  L. Reymond,et al.  Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer. , 2013, The journal of physical chemistry. B.

[109]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[110]  Chenglung Chen,et al.  Computer simulation to investigate the FRET application in DNA hybridization systems. , 2011, Physical chemistry chemical physics : PCCP.

[111]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[112]  Sabine Müller,et al.  Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity. , 2011, Journal of the American Chemical Society.

[113]  Sören Doose,et al.  Fluorescence quenching by photoinduced electron transfer: a reporter for conformational dynamics of macromolecules. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[114]  Lasse L. Hildebrandt,et al.  Optimal Background Estimators in Single-Molecule FRET Microscopy. , 2016, Biophysical journal.

[115]  S. Chiantia,et al.  Domain orientation in the N-Terminal PDZ tandem from PSD-95 is maintained in the full-length protein. , 2011, Structure.

[116]  O. Schiemann,et al.  mtsslSuite: Probing Biomolecular Conformation by Spin-Labeling Studies. , 2015, Methods in enzymology.

[117]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[118]  Taekjip Ha,et al.  Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[119]  Suren Felekyan,et al.  Filtered FCS: Species Auto- and Cross-Correlation Functions Highlight Binding and Dynamics in Biomolecules , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[120]  H. Grubmüller,et al.  Simulation of fluorescence anisotropy experiments: probing protein dynamics. , 2005, Biophysical journal.

[121]  Roland L Dunbrack,et al.  Outcome of a workshop on applications of protein models in biomedical research. , 2009, Structure.

[122]  R. Rigler,et al.  Fluorescence correlation spectroscopy with high count rate and low background: analysis of translational diffusion , 1993, European Biophysics Journal.

[123]  Jennifer L. Knight,et al.  Distance-restrained docking of rifampicin and rifamycin SV to RNA polymerase using systematic FRET measurements: developing benchmarks of model quality and reliability. , 2005, Biophysical journal.

[124]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[125]  Caroline P. Jung,et al.  Single-molecule multiparameter fluorescence spectroscopy reveals directional MutS binding to mismatched bases in DNA , 2012, Nucleic acids research.

[126]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[127]  B. Meer,et al.  Resonance Energy Transfer: Theory and Data , 1994 .

[128]  Michele Vendruscolo,et al.  Structure of an Intermediate State in Protein Folding and Aggregation , 2012, Science.

[129]  Ian S Haworth,et al.  Nanometer distance measurements in RNA using site-directed spin labeling. , 2007, Biophysical journal.

[130]  Ralf Kühnemuth,et al.  Supertertiary structure of the synaptic MAGuK scaffold proteins is conserved , 2012, Proceedings of the National Academy of Sciences.

[131]  Ralf Kühnemuth,et al.  Principles of single molecule multiparameter fluorescence spectroscopy , 2001 .

[132]  H. Sondermann,et al.  Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A , 2011, Proceedings of the National Academy of Sciences.

[133]  Richard Börner,et al.  An atomistic view on carbocyanine photophysics in the realm of RNA. , 2016, Physical chemistry chemical physics : PCCP.

[134]  W. Eaton,et al.  Characterizing the unfolded states of proteins using single-molecule FRET spectroscopy and molecular simulations , 2007, Proceedings of the National Academy of Sciences.

[135]  H. Gohlke,et al.  Structural assemblies of the di- and oligomeric G-protein coupled receptor TGR5 in live cells: an MFIS-FRET and integrative modelling study , 2016, Scientific Reports.

[136]  G. Bouvignies,et al.  Large-Scale Conformational Dynamics Control H5N1 Influenza Polymerase PB2 Binding to Importin α. , 2015, Journal of the American Chemical Society.

[137]  R. Best,et al.  Quantitative interpretation of FRET experiments via molecular simulation: force field and validation. , 2015, Biophysical journal.

[138]  D. Shaw,et al.  Assessment of the utility of contact‐based restraints in accelerating the prediction of protein structure using molecular dynamics simulations , 2015, Protein science : a publication of the Protein Society.

[139]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[140]  H. Grubmüller,et al.  AMBER-DYES: Characterization of Charge Fluctuations and Force Field Parameterization of Fluorescent Dyes for Molecular Dynamics Simulations. , 2014, Journal of chemical theory and computation.

[141]  B. Corry,et al.  Accounting for dye diffusion and orientation when relating FRET measurements to distances: three simple computational methods. , 2014, Physical chemistry chemical physics : PCCP.

[142]  L. Pearl,et al.  Cooperation of local motions in the Hsp90 molecular chaperone ATPase mechanism , 2016, Nature chemical biology.

[143]  William A. Eaton,et al.  Single molecule fluorescence probes dynamics of barrier crossing , 2013, Nature.

[144]  J. Winkler FRETting over the Spectroscopic Ruler , 2013, Science.

[145]  L. M. Wilhelmsson,et al.  Studying Z-DNA and B- to Z-DNA transitions using a cytosine analogue FRET-pair , 2016, Nucleic acids research.

[146]  Th. Förster Zwischenmolekulare Energiewanderung und Fluoreszenz , 1948 .

[147]  Claus A M Seidel,et al.  A toolkit and benchmark study for FRET-restrained high-precision structural modeling , 2012, Nature Methods.

[148]  A. Brunger,et al.  Complexin induces a conformational change at the membrane-proximal C-terminal end of the SNARE complex , 2016, eLife.

[149]  Gunnar Jeschke,et al.  DEER distance measurements on proteins. , 2012, Annual review of physical chemistry.

[150]  Linda Columbus,et al.  A new spin on protein dynamics. , 2002, Trends in biochemical sciences.