Group Transference Techniques for the Estimation of the Decoherence Times and Capacities of Quantum Markov Semigroups
暂无分享,去创建一个
Marius Junge | Cambyse Rouzé | Ivan Bardet | Nicholas Laracuente | Daniel Stilck França | M. Junge | C. Rouzé | D. S. França | N. Laracuente | I. Bardet | Nicholas Laracuente
[1] Ivan Bardet,et al. Estimating the decoherence time using non-commutative Functional Inequalities , 2017, 1710.01039.
[2] M. Ledoux,et al. Analysis and Geometry of Markov Diffusion Operators , 2013 .
[3] Hans Maassen,et al. The essentially commutative dilations of dynamical semigroups onMn , 1987 .
[4] Herbert Spohn,et al. An algebraic condition for the approach to equilibrium of an open N-level system , 1977 .
[5] G. Pisier. Non-commutative vector valued Lp-spaces and completely p-summing maps , 1993, math/9306206.
[6] M. Ledoux. On Talagrand's deviation inequalities for product measures , 1997 .
[7] O. Rothaus,et al. Hypercontractivity and the Bakry-Emery criterion for compact Lie groups , 1986 .
[8] Michael M. Wolf,et al. Entropy Production of Doubly Stochastic Quantum Channels , 2015 .
[9] R. Spekkens,et al. Measuring the quality of a quantum reference frame: The relative entropy of frameness , 2009, 0901.0943.
[10] Omar Fawzi,et al. A chain rule for the quantum relative entropy , 2020, Physical review letters.
[11] Christoph Hirche,et al. Amortized channel divergence for asymptotic quantum channel discrimination , 2018, Letters in Mathematical Physics.
[12] Eric P. Hanson,et al. Eventually Entanglement Breaking Markovian Dynamics: Structure and Characteristic Times , 2019, Annales Henri Poincaré.
[13] K. Lendi,et al. Quantum Dynamical Semigroups and Applications , 1987 .
[14] Serge Fehr,et al. On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.
[15] Mark M. Wilde,et al. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.
[16] P. Diaconis,et al. Comparison Techniques for Random Walk on Finite Groups , 1993 .
[17] John Watrous,et al. The Theory of Quantum Information , 2018 .
[18] D. Leung,et al. Continuity of Quantum Channel Capacities , 2008, 0810.4931.
[19] P. Meyer,et al. Quantum Probability for Probabilists , 1993 .
[20] D. Potapov,et al. Double Operator Integrals and Submajorization , 2010 .
[21] S. Beigi,et al. Hypercontractivity and the logarithmic Sobolev inequality for the completely bounded norm , 2015, 1509.02610.
[22] Mario Berta,et al. Amortization does not enhance the max-Rains information of a quantum channel , 2017, ArXiv.
[23] Andreas J. Winter,et al. The Quantum Capacity With Symmetric Side Channels , 2008, IEEE Transactions on Information Theory.
[24] Min-Hsiu Hsieh,et al. Characterizations of matrix and operator-valued Φ-entropies, and operator Efron–Stein inequalities , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[25] F. Brandão,et al. Reversible Framework for Quantum Resource Theories. , 2015, Physical review letters.
[26] M. Junge,et al. Mixed-norm Inequalities and Operator Space Lp Embedding Theory , 2010 .
[27] Raffaella Carbone,et al. Logarithmic Sobolev inequalities in non-commutative algebras , 2015 .
[28] A. Kossakowski,et al. On quantum statistical mechanics of non-Hamiltonian systems , 1972 .
[29] D. Bakry. L'hypercontractivité et son utilisation en théorie des semigroupes , 1994 .
[30] K. Temme,et al. Non-commutative Nash inequalities , 2015, 1508.02522.
[31] Daniel Stilck França,et al. Sandwiched Rényi Convergence for Quantum Evolutions , 2016, 1607.00041.
[32] Jianfeng Lu,et al. Gradient flow structure and exponential decay of the sandwiched Rényi divergence for primitive Lindblad equations with GNS-detailed balance , 2018, Journal of Mathematical Physics.
[33] David Pérez-García,et al. Quantum conditional relative entropy and quasi-factorization of the relative entropy , 2018, Journal of Physics A: Mathematical and Theoretical.
[34] Ivan Bardet,et al. Hypercontractivity and Logarithmic Sobolev Inequality for Non-primitive Quantum Markov Semigroups and Estimation of Decoherence Rates , 2018, Annales Henri Poincaré.
[35] Robin L. Hudson,et al. Quantum Ito's formula and stochastic evolutions , 1984 .
[36] M. Christandl,et al. Relative Entropy Bounds on Quantum, Private and Repeater Capacities , 2016, Communications in Mathematical Physics.
[37] L. Saloff-Coste,et al. Precise estimates on the rate at which certain diffusions tend to equilibrium , 1994 .
[38] M. Plenio,et al. Colloquium: quantum coherence as a resource , 2016, 1609.02439.
[39] L. Gurvits,et al. Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.
[40] Sergey G. Bobkov,et al. Modified log-sobolev inequalities, mixing and hypercontractivity , 2003, STOC '03.
[41] The spectrum of an operator on an interpolation space , 1969 .
[42] N. Varopoulos. Sobolev inequalities on Lie groups and symmetric spaces , 1989 .
[43] A. Frigerio,et al. Stationary states of quantum dynamical semigroups , 1978 .
[44] E. Stein,et al. Hypoelliptic differential operators and nilpotent groups , 1976 .
[45] M. Junge,et al. Capacity Estimates via Comparison with TRO Channels , 2016, Communications in Mathematical Physics.
[46] Mark M. Wilde,et al. Multiplicativity of Completely Bounded p-Norms Implies a Strong Converse for Entanglement-Assisted Capacity , 2013, ArXiv.
[47] K. Temme,et al. Quantum logarithmic Sobolev inequalities and rapid mixing , 2012, 1207.3261.
[48] M. Ruskai,et al. Entanglement Breaking Channels , 2003, quant-ph/0302031.
[49] J Eisert,et al. Dissipative quantum Church-Turing theorem. , 2011, Physical review letters.
[50] T. Rudolph,et al. The Wigner–Araki–Yanase theorem and the quantum resource theory of asymmetry , 2012, 1209.0921.
[51] Robert B. Griffiths,et al. Quantum Error Correction , 2011 .
[52] B. Zegarliński,et al. Coercive inequalities for Hörmander type generators in infinite dimensions , 2007 .
[53] M. Junge,et al. Strong Subadditivity Inequality and Entropic Uncertainty Relations , 2017, 1710.10038.
[54] Daniel Stilck França,et al. Relative Entropy Convergence for Depolarizing Channels , 2015, 1508.07021.
[55] F. Pastawski,et al. Hypercontractivity of quasi-free quantum semigroups , 2014, 1403.5224.
[56] P. Diaconis,et al. LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .
[57] L. Banchi,et al. Fundamental limits of repeaterless quantum communications , 2015, Nature Communications.
[58] Gilles Pisier,et al. Introduction to Operator Space Theory , 2003 .
[59] Li Gao,et al. Fisher Information and Logarithmic Sobolev Inequality for Matrix-Valued Functions , 2018, Annales Henri Poincaré.
[60] V. Paulsen. Completely Bounded Maps and Operator Algebras: Contents , 2003 .
[61] Salman Beigi,et al. Quantum Reverse Hypercontractivity: Its Tensorization and Application to Strong Converses , 2018, ArXiv.
[62] P. Diaconis. Group representations in probability and statistics , 1988 .
[63] P. Diaconis,et al. Nash inequalities for finite Markov chains , 1996 .
[64] Fréchet differentiability of the norm of Lp-spaces associated with arbitrary von Neumann algebras , 2014 .
[65] Mario Berta,et al. Converse Bounds for Private Communication Over Quantum Channels , 2016, IEEE Transactions on Information Theory.
[66] Tzong-Yow Lee,et al. Logarithmic Sobolev inequality for some models of random walks , 1998 .
[67] Michael D. Westmoreland,et al. Optimal signal ensembles , 1999, quant-ph/9912122.
[68] M. Wolf,et al. Simplifying additivity problems using direct sum constructions , 2007, 0704.1092.