Learning with Heterogeneous Misspecified Models: Characterization and Robustness

This paper develops a general framework to study how misinterpreting information impacts learning. Our main result is a simple criterion to characterize long-run beliefs based on the underlying form of misspecification. We present this characterization in the context of social learning, then highlight how it applies to other learning environments, including individual learning. A key contribution is that our characterization applies to settings with model heterogeneity and provides conditions for entrenched disagreement. Our characterization can be used to determine whether a representative agent approach is valid in the face of heterogeneity, study how differing levels of bias or unawareness of others’ biases impact learning, and explore whether the impact of a bias is sensitive to parametric specification or the source of information. This unified framework synthesizes insights gleaned from previously studied forms of misspecification and provides novel insights in specific applications, as we demonstrate in settings with partisan bias, overreaction, naive learning, and level-k reasoning.

[1]  Ryota Iijima,et al.  Stability and Robustness in Misspecified Learning Models , 2020, SSRN Electronic Journal.

[2]  Tristan Gagnon-Bartsch Taste Projection in Models of Social Learning ∗ , 2016 .

[3]  M. Cripps DIVISIBLE UPDATING , 2018 .

[4]  Kristóf Madarász,et al.  Sellers with Misspecified Models , 2016 .

[5]  Larry M. Bartels Beyond the Running Tally: Partisan Bias in Political Perceptions , 2002 .

[6]  R. Nickerson Confirmation Bias: A Ubiquitous Phenomenon in Many Guises , 1998 .

[7]  Yaw Nyarko,et al.  Learning In Mis-Specified Models And The Possibility Of Cycles , 1991 .

[8]  S. Zamir,et al.  Formulation of Bayesian analysis for games with incomplete information , 1985 .

[9]  M. Rabin,et al.  Naïve Herding in Rich-Information Settings , 2010 .

[10]  P. Jehiel,et al.  Social Learning with Coarse Inference , 2013 .

[11]  D. Moore,et al.  The trouble with overconfidence. , 2008, Psychological review.

[12]  B. Kőszegi EGO UTILITY, OVERCONFIDENCE, AND TASK CHOICE , 2006 .

[13]  M. Rabin,et al.  Channeled Attention and Stable Errors , 2018 .

[14]  Kenneth J. Arrow,et al.  Notes on Expectations Equilibria in Bayesian Settings Institute for Mathematical Studies in the Social Sciences , 1973 .

[15]  Benjamin Bushong,et al.  Learning with misattribution of reference dependence , 2022, J. Econ. Theory.

[16]  C. Peirce An unpublished manuscript) , 2016 .

[17]  C. Plott,et al.  Information Cascades: Replication and an Extension to Majority Rule and Conformity-Rewarding Institutions , 2001 .

[18]  Colin Camerer,et al.  A Cognitive Hierarchy Model of Games , 2004 .

[19]  Thorsten Pachur,et al.  The Social Circle Heuristic: Fast and Frugal Decisions Based on Small Samples , 2005 .

[20]  Ignacio Esponda,et al.  Asymptotic behavior of Bayesian learners with misspecified models , 2019, J. Econ. Theory.

[21]  Ali Jadbabaie,et al.  A Theory of Non‐Bayesian Social Learning , 2018 .

[22]  Ryota Iijima,et al.  Misinterpreting Others and the Fragility of Social Learning , 2019, Econometrica.

[23]  Jennifer Jerit,et al.  Partisan Perceptual Bias and the Information Environment , 2012 .

[24]  Stefan P. Penczynski The nature of social learning: Experimental evidence ☆ , 2017 .

[25]  Norman Miller,et al.  Ten years of research on the false-consensus effect: an empirical and theoretical review , 1987 .

[26]  Andrea Wilson,et al.  Bounded Memory and Biases in Information Processing: Bounded Memory and Biases in Information Processing , 2014 .

[27]  Joel L. Schrag,et al.  First Impressions Matter: A Model of Confirmatory Bias , 1999 .

[28]  Ali Jadbabaie,et al.  Non-Bayesian Social Learning , 2011, Games Econ. Behav..

[29]  S. Bikhchandani,et al.  You have printed the following article : A Theory of Fads , Fashion , Custom , and Cultural Change as Informational Cascades , 2007 .

[30]  Ignacio Esponda,et al.  Berk-Nash Equilibrium: A Framework for Modeling Agents with Misspecified Models , 2014, 1411.1152.

[31]  Eld,et al.  Cursed Equilibrium , 2000 .

[32]  C. Shalizi Dynamics of Bayesian Updating with Dependent Data and Misspecified Models , 2009, 0901.1342.

[33]  Daniel N. Hauser,et al.  Misinterpreting Social Outcomes and Information Campaigns∗ , 2018 .

[34]  R. Razin,et al.  Correlation Neglect , Voting Behaviour and Information Aggregation , 2014 .

[35]  P. Jehiel,et al.  Information Redundancy Neglect versus Overconfidence: A Social Learning Experiment , 2017, American Economic Journal: Microeconomics.

[36]  Joshua Schwartzstein SELECTIVE ATTENTION AND LEARNING , 2014 .

[37]  Philipp Strack,et al.  Unrealistic Expectations and Misguided Learning , 2017 .

[38]  A. Banerjee,et al.  A Simple Model of Herd Behavior , 1992 .

[39]  Miguel A. Costa-Gomes,et al.  Cognition and Behavior in Two-Person Guessing Games: An Experimental Study , 2003 .

[40]  Alvaro Sandroni,et al.  Non-Bayesian Learning , 2010 .

[41]  Ryota Iijima,et al.  Dispersed Behavior and Perceptions in Assortative Societies , 2018, SSRN Electronic Journal.

[42]  Alvaro Sandroni,et al.  Non-Bayesian Updating: a Theoretical Framework , 2005 .

[43]  L. Ross,et al.  The “false consensus effect”: An egocentric bias in social perception and attribution processes , 1977 .

[44]  R. Spiegler Bayesian Networks and Boundedly Rational Expectations , 2014 .

[45]  Martin Weber,et al.  The Perception of Dependence, Investment Decisions, and Stock Prices , 2016, The Journal of Finance.

[46]  Dale T. Miller,et al.  Pluralistic ignorance: When similarity is interpreted as dissimilarity. , 1987 .

[47]  Markus K. Brunnermeier,et al.  Optimal Expectations , 2004 .

[48]  Florian Zimmermann,et al.  Correlation Neglect in Belief Formation , 2013, SSRN Electronic Journal.

[49]  Drew Fudenberg,et al.  Active learning with a misspecified prior , 2017 .

[50]  Dorothea Kübler,et al.  Limited Depth of Reasoning and Failure of Cascade Formation in the Laboratory , 2001 .

[51]  Don A. Moore,et al.  Overprecision in Judgment , 2015 .

[52]  Pietro Ortoleva Modeling the Change of Paradigm: Non-Bayesian Reactions to Unexpected News † , 2012 .

[53]  Daniel N. Hauser,et al.  Social Learning with Model Misspecification: A Framework and a Characterization , 2017 .

[54]  Tristan Gagnon-Bartsch,et al.  Naive Social Learning, Mislearning, and Unlearning , 2016 .

[55]  A. Peysakhovich,et al.  Paying (for) Attention: The Impact of Information Processing Costs on Bayesian Inference , 2016 .

[56]  Kevin He,et al.  Mislearning from Censored Data: The Gambler's Fallacy in Optimal-Stopping Problems , 2018 .

[57]  Philippe Jehiel,et al.  Analogy-based expectation equilibrium , 2004, J. Econ. Theory.

[58]  J. Aislinn Bohren,et al.  Informational Herding with Model Misspecification , 2013, J. Econ. Theory.

[59]  R. Berk,et al.  Limiting Behavior of Posterior Distributions when the Model is Incorrect , 1966 .

[60]  E. Snowberg,et al.  Overconfidence in Political Behavior , 2013 .

[61]  Lones Smith,et al.  Pathological Outcomes of Observational Learning , 2000 .