Modulation of Visual Responses by Behavioral State in Mouse Visual Cortex

[1]  David S. Greenberg,et al.  Visually evoked activity in cortical cells imaged in freely moving animals , 2009, Proceedings of the National Academy of Sciences.

[2]  Michael J. Goard,et al.  Basal Forebrain Activation Enhances Cortical Coding of Natural Scenes , 2009, Nature Neuroscience.

[3]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[4]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[5]  Jessica A. Cardin,et al.  Driving fast-spiking cells induces gamma rhythm and controls sensory responses , 2009, Nature.

[6]  R. Wurtz Recounting the impact of Hubel and Wiesel , 2009, The Journal of physiology.

[7]  Jason Wolfe,et al.  Sparse temporal coding of elementary tactile features during active whisker sensation , 2009, Nature Neuroscience.

[8]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[9]  Gonzalo H. Otazu,et al.  Engaging in an auditory task suppresses responses in auditory cortex , 2009, Nature Neuroscience.

[10]  Sean M Montgomery,et al.  Entrainment of Neocortical Neurons and Gamma Oscillations by the Hippocampal Theta Rhythm , 2008, Neuron.

[11]  D. Katz,et al.  Behavioral states, network states, and sensory response variability. , 2008, Journal of neurophysiology.

[12]  Louise S. Delicato,et al.  Acetylcholine contributes through muscarinic receptors to attentional modulation in V1 , 2008, Nature.

[13]  J. Poulet,et al.  Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice , 2008, Nature.

[14]  Harvey A Swadlow,et al.  Task difficulty modulates the activity of specific neuronal populations in primary visual cortex , 2008, Nature Neuroscience.

[15]  W. M. Keck,et al.  Highly Selective Receptive Fields in Mouse Visual Cortex , 2008, The Journal of Neuroscience.

[16]  Jessica A. Cardin,et al.  Cellular Mechanisms Underlying Stimulus-Dependent Gain Modulation in Primary Visual Cortex Neurons In Vivo , 2008, Neuron.

[17]  David S. Greenberg,et al.  Population imaging of ongoing neuronal activity in the visual cortex of awake rats , 2008, Nature Neuroscience.

[18]  L. Maffei,et al.  The Antidepressant Fluoxetine Restores Plasticity in the Adult Visual Cortex , 2008, Science.

[19]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[20]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[21]  Partha P. Mitra,et al.  Observed Brain Dynamics , 2007 .

[22]  F. Haiss,et al.  Spatiotemporal Dynamics of Cortical Sensorimotor Integration in Behaving Mice , 2007, Neuron.

[23]  David S. Greenberg,et al.  Spatial Organization of Neuronal Population Responses in Layer 2/3 of Rat Barrel Cortex , 2007, The Journal of Neuroscience.

[24]  D. Tank,et al.  Imaging Large-Scale Neural Activity with Cellular Resolution in Awake, Mobile Mice , 2007, Neuron.

[25]  Jessica A. Cardin,et al.  Stimulus Feature Selectivity in Excitatory and Inhibitory Neurons in Primary Visual Cortex , 2007, The Journal of Neuroscience.

[26]  Jude F. Mitchell,et al.  Differential Attention-Dependent Response Modulation across Cell Classes in Macaque Visual Area V4 , 2007, Neuron.

[27]  Alessandro Sale,et al.  Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition , 2007, Nature Neuroscience.

[28]  P. Lennie,et al.  A New Code for Contrast in the Primate Visual Pathway , 2007, The Journal of Neuroscience.

[29]  Lisa M. Giocomo,et al.  Cholinergic modulation of cortical function , 2007, Journal of Molecular Neuroscience.

[30]  N. Weinberger Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. , 2007, Learning & memory.

[31]  Harvey A Swadlow,et al.  Brain state and contrast sensitivity in the awake visual thalamus , 2006, Nature Neuroscience.

[32]  J. Alonso,et al.  Thalamic Burst Mode and Inattention in the Awake LGNd , 2006, Neuron.

[33]  Mark F Bear,et al.  Reward timing in the primary visual cortex. , 2006, Science.

[34]  Jadin C. Jackson,et al.  Quantitative measures of cluster quality for use in extracellular recordings , 2005, Neuroscience.

[35]  J W Gnadt,et al.  Higher-order thalamic relays burst more than first-order relays. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Matthew S Grubb,et al.  Visual response properties of burst and tonic firing in the mouse dorsal lateral geniculate nucleus. , 2005, Journal of neurophysiology.

[37]  W. Singer,et al.  Short- and Long-Term Effects of Cholinergic Modulation on Gamma Oscillations and Response Synchronization in the Visual Cortex , 2004, The Journal of Neuroscience.

[38]  G. Buzsáki,et al.  Characterization of neocortical principal cells and interneurons by network interactions and extracellular features. , 2004, Journal of neurophysiology.

[39]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[40]  Diego Contreras,et al.  Electrophysiological classes of neocortical neurons , 2004, Neural Networks.

[41]  I. Thompson,et al.  Quantitative characterization of visual response properties in the mouse dorsal lateral geniculate nucleus. , 2003, Journal of neurophysiology.

[42]  B. Sakmann,et al.  Dynamic Receptive Fields of Reconstructed Pyramidal Cells in Layers 3 and 2 of Rat Somatosensory Barrel Cortex , 2003, The Journal of physiology.

[43]  Mark Hübener,et al.  Mouse visual cortex , 2003, Current Opinion in Neurobiology.

[44]  Maria V. Sanchez-Vives,et al.  Electrophysiological classes of cat primary visual cortical neurons in vivo as revealed by quantitative analyses. , 2003, Journal of neurophysiology.

[45]  J. Maunsell,et al.  The role of attention in visual processing. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  W. Usrey The role of spike timing for thalamocortical processing , 2002, Current Opinion in Neurobiology.

[47]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[48]  W. Guido,et al.  Burst and tonic response modes in thalamic neurons during sleep and wakefulness. , 2001, Journal of neurophysiology.

[49]  S. Sherman Tonic and burst firing: dual modes of thalamocortical relay , 2001, Trends in Neurosciences.

[50]  J. Csicsvari,et al.  Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. , 2000, Journal of neurophysiology.

[51]  Erika E. Fanselow,et al.  Behavioral Modulation of Tactile Responses in the Rat Somatosensory System , 1999, The Journal of Neuroscience.

[52]  F. Ebner,et al.  Modulation of receptive field properties of thalamic somatosensory neurons by the depth of anesthesia. , 1999, Journal of neurophysiology.

[53]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[54]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[55]  Hyung-Cheul Shin,et al.  Differential phasic modulation of short and long latency afferent sensory transmission to single neurons in the primary somatosensory cortex in behaving rats , 1994, Neuroscience Research.

[56]  S. Sherman,et al.  Effects of membrane voltage on receptive field properties of lateral geniculate neurons in the cat: contributions of the low-threshold Ca2+ conductance. , 1992, Journal of neurophysiology.

[57]  C. L. Cox,et al.  Cellular bases of neocortical activation: modulation of neural oscillations by the nucleus basalis and endogenous acetylcholine , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[58]  T. Garland,et al.  Individual variation in locomotor behavior and maximal oxygen consumption in mice , 1992, Physiology & Behavior.

[59]  The Role of Attention in Visual Processing , 1991 .

[60]  M. Posner,et al.  The attention system of the human brain. , 1990, Annual review of neuroscience.

[61]  C. A. Castro,et al.  Spatial selectivity of rat hippocampal neurons: dependence on preparedness for movement. , 1989, Science.

[62]  G. Buzsáki,et al.  Nucleus basalis and thalamic control of neocortical activity in the freely moving rat , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  T. Tsumoto,et al.  A functional role of cholinergic innervation to neurons in the cat visual cortex. , 1987, Journal of neurophysiology.

[64]  P. E. Hallett,et al.  A schematic eye for the mouse, and comparisons with the rat , 1985, Vision Research.

[65]  D. McCormick,et al.  Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. , 1985, Journal of neurophysiology.

[66]  A. Sillito,et al.  Cholinergic modulation of the functional organization of the cat visual cortex , 1983, Brain Research.

[67]  R. Wurtz,et al.  Enhancement of visual responses in monkey striate cortex and frontal eye fields. , 1976, Journal of neurophysiology.

[68]  R. Wurtz Visual receptive fields of striate cortex neurons in awake monkeys. , 1969, Journal of neurophysiology.

[69]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[70]  R W Rodieck,et al.  Receptive Fields in the Cat Retina: A New Type , 1967, Science.

[71]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.