Radar-Camera Fusion for Object Detection and Semantic Segmentation in Autonomous Driving: A Comprehensive Review

Driven by deep learning techniques, perception technology in autonomous driving has developed rapidly in recent years. To achieve accurate and robust perception capabilities, autonomous vehicles are often equipped with multiple sensors, making sensor fusion a crucial part of the perception system. Among these fused sensors, radars and cameras enable a complementary and cost-effective perception of the surrounding environment regardless of lighting and weather conditions. This review aims to provide a comprehensive guideline for radar-camera fusion, particularly concentrating on perception tasks related to object detection and semantic segmentation. Based on the principles of the radar and camera sensors, we delve into the data processing process and representations, followed by an in-depth analysis and summary of radar-camera fusion datasets. In the review of methodologies in radar-camera fusion, we address interrogative questions, including"why to fuse","what to fuse","where to fuse","when to fuse", and"how to fuse", subsequently discussing various challenges and potential research directions within this domain. To ease the retrieval and comparison of datasets and fusion methods, we also provide an interactive website: https://XJTLU-VEC.github.io/Radar-Camera-Fusion.

[1]  Qingqing Dang,et al.  DETRs Beat YOLOs on Real-time Object Detection , 2023, ArXiv.

[2]  Dongsuk Kum,et al.  CRN: Camera Radar Net for Accurate, Robust, Efficient 3D Perception , 2023, 2304.00670.

[3]  Zizhang Wu,et al.  MVFusion: Multi-View 3D Object Detection with Semantic-aligned Radar and Camera Fusion , 2023, 2023 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Yikang Li,et al.  SensorX2car: Sensors-to-car calibration for autonomous driving in road scenarios , 2023, ArXiv.

[5]  Diange Yang,et al.  Bridging the View Disparity Between Radar and Camera Features for Multi-Modal Fusion 3D Object Detection , 2022, IEEE Transactions on Intelligent Vehicles.

[6]  Angela P. Schoellig,et al.  Boreas: A multi-season autonomous driving dataset , 2022, Int. J. Robotics Res..

[7]  Agathoniki Trigoni,et al.  CubeLearn: End-to-End Learning for Human Motion Recognition From Raw mmWave Radar Signals , 2021, IEEE Internet of Things Journal.

[8]  Wanli Ouyang,et al.  Deep Instance Segmentation With Automotive Radar Detection Points , 2021, IEEE Transactions on Intelligent Vehicles.

[9]  Gábor Németh,et al.  aiMotive Dataset: A Multimodal Dataset for Robust Autonomous Driving with Long-Range Perception , 2022, ArXiv.

[10]  Yuchuan Du,et al.  A Novel Spatio-Temporal Synchronization Method of Roadside Asynchronous MMW Radar-Camera for Sensor Fusion , 2022, IEEE Transactions on Intelligent Transportation Systems.

[11]  N. Armstrong-Crews,et al.  CramNet: Camera-Radar Fusion with Ray-Constrained Cross-Attention for Robust 3D Object Detection , 2022, ECCV.

[12]  F. Faion,et al.  DeepFusion: A Robust and Modular 3D Object Detector for Lidars, Cameras and Radars , 2022, 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[13]  Dongsuk Kum,et al.  CRAFT: Camera-Radar 3D Object Detection with Spatio-Contextual Fusion Transformer , 2022, AAAI.

[14]  L. Li,et al.  YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications , 2022, ArXiv.

[15]  Dinesh Bharadia,et al.  RadSegNet: A Reliable Approach to Radar Camera Fusion , 2022, ArXiv.

[16]  H. Liao,et al.  YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors , 2022, 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Shanq-Jang Ruan,et al.  Semantic Segmentation for Free Space and Lane Based on Grid-Based Interest Point Detection , 2022, IEEE Transactions on Intelligent Transportation Systems.

[18]  L. Gool,et al.  HRFuser: A Multi-resolution Sensor Fusion Architecture for 2D Object Detection , 2022, ArXiv.

[19]  T. Oberlin,et al.  DAROD: A Deep Automotive Radar Object Detector on Range-Doppler maps , 2022, 2022 IEEE Intelligent Vehicles Symposium (IV).

[20]  Avik Santra,et al.  Spiking Neural Network-Based Radar Gesture Recognition System Using Raw ADC Data , 2022, IEEE Sensors Letters.

[21]  Yi Zhou,et al.  Towards Deep Radar Perception for Autonomous Driving: Datasets, Methods, and Challenges , 2022, Sensors.

[22]  Huizi Mao,et al.  BEVFusion: Multi-Task Multi-Sensor Fusion with Unified Bird's-Eye View Representation , 2022, 2023 IEEE International Conference on Robotics and Automation (ICRA).

[23]  L. Dudziak,et al.  EdgeViTs: Competing Light-weight CNNs on Mobile Devices with Vision Transformers , 2022, ECCV.

[24]  Weiqi Sun,et al.  TJ4DRadSet: A 4D Radar Dataset for Autonomous Driving , 2022, 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC).

[25]  K. Berntorp,et al.  Exploiting Temporal Relations on Radar Perception for Autonomous Driving , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Siyang Cao,et al.  Automatic Radar-Camera Dataset Generation for Sensor-Fusion Applications , 2022, IEEE Robotics and Automation Letters.

[27]  Antoni B. Chan,et al.  A Comparative Survey of Deep Active Learning , 2022, ArXiv.

[28]  Siyuan Huang,et al.  Multi-modal Sensor Fusion for Auto Driving Perception: A Survey , 2022, ArXiv.

[29]  Trevor Darrell,et al.  A ConvNet for the 2020s , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Haotian Yan,et al.  Lawin Transformer: Improving Semantic Segmentation Transformer with Multi-Scale Representations via Large Window Attention , 2022, ArXiv.

[31]  Jason R. Rambach,et al.  Fusion Point Pruning for Optimized 2D Object Detection with Radar-Camera Fusion , 2022, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[32]  D. Katabi,et al.  Unsupervised Learning for Human Sensing Using Radio Signals , 2022, 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV).

[33]  Patrick P'erez,et al.  Raw High-Definition Radar for Multi-Task Learning , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Xudong Jiang,et al.  Attention-Based Dual-Stream Vision Transformer for Radar Gait Recognition , 2021, ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[35]  Dong Zhang,et al.  Towards Domain-Independent and Real-Time Gesture Recognition Using mmWave Signal , 2021, IEEE Transactions on Mobile Computing.

[36]  Mohammad Rastegari,et al.  MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer , 2021, ICLR.

[37]  Zhiqing Wei,et al.  MmWave Radar and Vision Fusion for Object Detection in Autonomous Driving: A Review , 2021, Sensors.

[38]  M. Kristan,et al.  WaSR—A Water Segmentation and Refinement Maritime Obstacle Detection Network , 2021, IEEE Transactions on Cybernetics.

[39]  Xiaojun Jing,et al.  Semisupervised Human Activity Recognition With Radar Micro-Doppler Signatures , 2021, IEEE Transactions on Geoscience and Remote Sensing.

[40]  M. Kristan,et al.  MODS—A USV-Oriented Object Detection and Obstacle Segmentation Benchmark , 2021, IEEE Transactions on Intelligent Transportation Systems.

[41]  Jianping Wang,et al.  CFAR-Based Interference Mitigation for FMCW Automotive Radar Systems , 2021, IEEE Transactions on Intelligent Transportation Systems.

[42]  Zhihui Li,et al.  A Survey of Deep Active Learning , 2020, ACM Comput. Surv..

[43]  Zhi Tian,et al.  FCOS: A Simple and Strong Anchor-Free Object Detector , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Long Chen,et al.  Deep Learning for Image and Point Cloud Fusion in Autonomous Driving: A Review , 2020, IEEE Transactions on Intelligent Transportation Systems.

[45]  Huapeng Wu,et al.  FusionLane: Multi-Sensor Fusion for Lane Marking Semantic Segmentation Using Deep Neural Networks , 2020, IEEE Transactions on Intelligent Transportation Systems.

[46]  Yi Xiao,et al.  Multimodal End-to-End Autonomous Driving , 2019, IEEE Transactions on Intelligent Transportation Systems.

[47]  Kevin Tirta Wijaya,et al.  K-Radar: 4D Radar Object Detection Dataset and Benchmark for Autonomous Driving in Various Weather Conditions , 2022, ArXiv.

[48]  Julian F. P. Kooij,et al.  Multi-class Road User Detection with 3+1D Radar in the View-of-Delft Dataset , 2022, IEEE Robotics and Automation Letters.

[49]  Adam W. Harley,et al.  A Simple Baseline for BEV Perception Without LiDAR , 2022, ArXiv.

[50]  R. Ebelt,et al.  Deep Learning Based Image Enhancement for Automotive Radar Trained with an Advanced Virtual Sensor , 2022, IEEE Access.

[51]  B. Sick,et al.  Object detection for automotive radar point clouds – a comparison , 2021, AI Perspectives.

[52]  Rao Fu,et al.  HRFormer: High-Resolution Transformer for Dense Prediction , 2021, ArXiv.

[53]  Yoshua Bengio,et al.  FloW: A Dataset and Benchmark for Floating Waste Detection in Inland Waters , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[54]  Yimin Liu,et al.  Robust Small Object Detection on the Water Surface through Fusion of Camera and Millimeter Wave Radar , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[55]  Haoran Wei,et al.  WB-DETR: Transformer-Based Detector without Backbone , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[56]  Sven Tomforde,et al.  Graph Convolutional Networks for 3D Object Detection on Radar Data , 2021, 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW).

[57]  Girish Chowdhary,et al.  3D Detection and Tracking for On-road Vehicles with a Monovision Camera and Dual Low-cost 4D mmWave Radars , 2021, 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).

[58]  Li Wang,et al.  RPFA-Net: a 4D RaDAR Pillar Feature Attention Network for 3D Object Detection , 2021, 2021 IEEE International Intelligent Transportation Systems Conference (ITSC).

[59]  Avik Santra,et al.  Improved Target Detection and Feature Extraction using a Complex-Valued Adaptive Sine Filter on Radar Time Domain Data , 2021, 2021 29th European Signal Processing Conference (EUSIPCO).

[60]  Rui Fan,et al.  SNE-RoadSeg+: Rethinking Depth-Normal Translation and Deep Supervision for Freespace Detection , 2021, 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[61]  Alexander G. Schwing,et al.  Per-Pixel Classification is Not All You Need for Semantic Segmentation , 2021, NeurIPS.

[62]  Tingle Li,et al.  Improving Multi-Modal Learning with Uni-Modal Teachers , 2021, ArXiv.

[63]  Markus Lienkamp,et al.  Radar Voxel Fusion for 3D Object Detection , 2021, Applied Sciences.

[64]  Dacheng Tao,et al.  ViTAE: Vision Transformer Advanced by Exploring Intrinsic Inductive Bias , 2021, NeurIPS.

[65]  Hongyu Chen,et al.  A New Automotive Radar 4D Point Clouds Detector by Using Deep Learning , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[66]  Rainer Martin,et al.  A DNN Autoencoder for Automotive Radar Interference Mitigation , 2021, ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[67]  Yunfei Long,et al.  Radar-Camera Pixel Depth Association for Depth Completion , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[68]  Jiyang Qi,et al.  You Only Look at One Sequence: Rethinking Transformer in Vision through Object Detection , 2021, NeurIPS.

[69]  Anima Anandkumar,et al.  SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers , 2021, NeurIPS.

[70]  Cordelia Schmid,et al.  Segmenter: Transformer for Semantic Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[71]  Jenq-Neng Hwang,et al.  Rethinking of Radar’s Role: A Camera-Radar Dataset and Systematic Annotator via Coordinate Alignment , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[72]  Yaowei Wang,et al.  Conformer: Local Features Coupling Global Representations for Visual Recognition , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[73]  A. Yarovoy,et al.  Radar-PointGNN: Graph Based Object Recognition for Unstructured Radar Point-cloud Data , 2021, 2021 IEEE Radar Conference (RadarConf21).

[74]  M. Ritchie,et al.  Open Radar Initiative: Large Scale Dataset for Benchmarking of micro-Doppler Recognition Algorithms , 2021, 2021 IEEE Radar Conference (RadarConf21).

[75]  Robert Laganiere,et al.  RADDet: Range-Azimuth-Doppler based Radar Object Detection for Dynamic Road Users , 2021, 2021 18th Conference on Robots and Vision (CRV).

[76]  Longhui Wei,et al.  Visformer: The Vision-friendly Transformer , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[77]  Florence Tupin,et al.  Multi-View Radar Semantic Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[78]  Suya You,et al.  CalibDNN: multimodal sensor calibration for perception using deep neural networks , 2021, Defense + Commercial Sensing.

[79]  Ivan Petrović,et al.  Spatiotemporal Multisensor Calibration via Gaussian Processes Moving Target Tracking , 2021, IEEE Transactions on Robotics.

[80]  Avik Santra,et al.  Data-Driven Radar Processing Using a Parametric Convolutional Neural Network for Human Activity Classification , 2021, IEEE Sensors Journal.

[81]  Julian F. P. Kooij,et al.  A Joint Extrinsic Calibration Tool for Radar, Camera and Lidar , 2021, IEEE Transactions on Intelligent Vehicles.

[82]  Markus Lienkamp,et al.  Kernel Point Convolution LSTM Networks for Radar Point Cloud Segmentation , 2021, Applied Sciences.

[83]  Yunxiang Mao,et al.  Radar Camera Fusion via Representation Learning in Autonomous Driving , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[84]  Ivan Petrovic,et al.  A Continuous-Time Approach for 3D Radar-to-Camera Extrinsic Calibration , 2021, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[85]  Jürgen Dickmann,et al.  RadarScenes: A Real-World Radar Point Cloud Data Set for Automotive Applications , 2021, 2021 IEEE 24th International Conference on Information Fusion (FUSION).

[86]  Robert Laganiere,et al.  PolarNet: Accelerated Deep Open Space Segmentation Using Automotive Radar in Polar Domain , 2021, VEHITS.

[87]  K. J. Joseph,et al.  Towards Open World Object Detection , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[88]  Franz Pernkopf,et al.  Resource-Efficient Deep Neural Networks for Automotive Radar Interference Mitigation , 2021, IEEE Journal of Selected Topics in Signal Processing.

[89]  Minh N. Do,et al.  RaDICaL: A Synchronized FMCW Radar, Depth, IMU and RGB Camera Data Dataset With Low-Level FMCW Radar Signals , 2021, IEEE Journal of Selected Topics in Signal Processing.

[90]  Jenq-Neng Hwang,et al.  RODNet: A Real-Time Radar Object Detection Network Cross-Supervised by Camera-Radar Fused Object 3D Localization , 2021, IEEE Journal of Selected Topics in Signal Processing.

[91]  Avik Santra,et al.  Radar Image Reconstruction from Raw ADC Data using Parametric Variational Autoencoder with Domain Adaptation , 2021, 2020 25th International Conference on Pattern Recognition (ICPR).

[92]  Xin Di,et al.  A Roadside Camera-Radar Sensing Fusion System for Intelligent Transportation , 2021, 2020 17th European Radar Conference (EuRAD).

[93]  M. Wintermantel,et al.  Interference Avoidance and Mitigation in Automotive Radar , 2021, 2020 17th European Radar Conference (EuRAD).

[94]  Tao Xiang,et al.  Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[95]  Siqi Liu,et al.  Real-Time Temporal and Rotational Calibration of Heterogeneous Sensors Using Motion Correlation Analysis , 2020, IEEE Transactions on Robotics.

[96]  Sumit Roy,et al.  RAMP-CNN: A Novel Neural Network for Enhanced Automotive Radar Object Recognition , 2020, IEEE Sensors Journal.

[97]  H. Qi,et al.  CenterFusion: Center-based Radar and Camera Fusion for 3D Object Detection , 2020, 2021 IEEE Winter Conference on Applications of Computer Vision (WACV).

[98]  Sen Wang,et al.  RADIATE: A Radar Dataset for Automotive Perception in Bad Weather , 2020, 2021 IEEE International Conference on Robotics and Automation (ICRA).

[99]  Bin Li,et al.  Deformable DETR: Deformable Transformers for End-to-End Object Detection , 2020, ICLR.

[100]  Hanno Gottschalk,et al.  YOdar: Uncertainty-based Sensor Fusion for Vehicle Detection with Camera and Radar Sensors , 2020, ICAART.

[101]  Ivan Petrović,et al.  Online multi-sensor calibration based on moving object tracking , 2020, Adv. Robotics.

[102]  F. Tupin,et al.  CARRADA Dataset: Camera and Automotive Radar with Range- Angle- Doppler Annotations , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[103]  Klaus C. J. Dietmayer,et al.  Deep Multi-Modal Object Detection and Semantic Segmentation for Autonomous Driving: Datasets, Methods, and Challenges , 2019, IEEE Transactions on Intelligent Transportation Systems.

[104]  Yuanchang Liu,et al.  WODIS: Water Obstacle Detection Network Based on Image Segmentation for Autonomous Surface Vehicles in Maritime Environments , 2021, IEEE Transactions on Instrumentation and Measurement.

[105]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[106]  Liang-qun Li,et al.  A Feature Pyramid Fusion Detection Algorithm Based on Radar and Camera Sensor , 2020, 2020 15th IEEE International Conference on Signal Processing (ICSP).

[107]  Ming Yang,et al.  DLT-Net: Joint Detection of Drivable Areas, Lane Lines, and Traffic Objects , 2020, IEEE Transactions on Intelligent Transportation Systems.

[108]  J. Choi,et al.  GRIF Net: Gated Region of Interest Fusion Network for Robust 3D Object Detection from Radar Point Cloud and Monocular Image , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[109]  Panfeng Huang,et al.  Autonomous Obstacle Avoidance for UAV based on Fusion of Radar and Monocular Camera , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[110]  Daxin Tian,et al.  A Camera–Radar Fusion Method Based on Edge Computing , 2020, 2020 IEEE International Conference on Edge Computing (EDGE).

[111]  Robert Weigel,et al.  Region based Single-Stage Interference Mitigation and Target Detection , 2020, 2020 IEEE Radar Conference (RadarConf20).

[112]  M. Dreher,et al.  Radar-based 2D Car Detection Using Deep Neural Networks , 2020, 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC).

[113]  Hairong Qi,et al.  Radar-Camera Sensor Fusion for Joint Object Detection and Distance Estimation in Autonomous Vehicles , 2020, ArXiv.

[114]  Karsten Berns,et al.  Radar+RGB Attentive Fusion for Robust Object Detection in Autonomous Vehicles , 2020, ArXiv.

[115]  Eugen Brenner,et al.  A Hybrid Timestamping Approach for Multi-Sensor Perception Systems , 2020, 2020 23rd Euromicro Conference on Digital System Design (DSD).

[116]  Jian Sun,et al.  AutoAssign: Differentiable Label Assignment for Dense Object Detection , 2020, ArXiv.

[117]  Jingdong Wang,et al.  Point-Set Anchors for Object Detection, Instance Segmentation and Pose Estimation , 2020, ECCV.

[118]  Bharanidhar Duraisamy,et al.  Detection and Tracking on Automotive Radar Data with Deep Learning , 2020, 2020 IEEE 23rd International Conference on Information Fusion (FUSION).

[119]  Zhiping Lin,et al.  Range-Doppler Detection in Automotive Radar with Deep Learning , 2020, 2020 International Joint Conference on Neural Networks (IJCNN).

[120]  Shunqiao Sun,et al.  MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges , 2020, IEEE Signal Processing Magazine.

[121]  Suraj Jog,et al.  Through Fog High-Resolution Imaging Using Millimeter Wave Radar , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[122]  Mohammadreza Mostajabi,et al.  High Resolution Radar Dataset for Semi-Supervised Learning of Dynamic Objects , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[123]  Christian Wöhler,et al.  Scene Understanding With Automotive Radar , 2020, IEEE Transactions on Intelligent Vehicles.

[124]  Nicolas Usunier,et al.  End-to-End Object Detection with Transformers , 2020, ECCV.

[125]  Hong-Yuan Mark Liao,et al.  YOLOv4: Optimal Speed and Accuracy of Object Detection , 2020, ArXiv.

[126]  Xu Dong,et al.  Probabilistic Oriented Object Detection in Automotive Radar , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[127]  Michele Fenzi,et al.  Scalable Active Learning for Object Detection , 2020, 2020 IEEE Intelligent Vehicles Symposium (IV).

[128]  Matthew Gadd,et al.  RSS-Net: Weakly-Supervised Multi-Class Semantic Segmentation with FMCW Radar , 2020, 2020 IEEE Intelligent Vehicles Symposium (IV).

[129]  Robert Weigel,et al.  Automotive Radar Interference Mitigation using a Convolutional Autoencoder , 2020, 2020 IEEE International Radar Conference (RADAR).

[130]  Marcio L. Lima de Oliveira,et al.  Deep Convolutional Autoencoder Applied for Noise Reduction in Range-Doppler Maps of FMCW Radars , 2020, 2020 IEEE International Radar Conference (RADAR).

[131]  Elnaz Jahani Heravi,et al.  Deep Open Space Segmentation using Automotive Radar , 2020, 2020 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[132]  Andrei Anghel,et al.  Fully Convolutional Neural Networks for Automotive Radar Interference Mitigation , 2020, 2020 IEEE 92nd Vehicular Technology Conference (VTC2020-Fall).

[133]  Terrance E. Boult,et al.  The Overlooked Elephant of Object Detection: Open Set , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[134]  Yifan Zhang,et al.  Spatial Attention Fusion for Obstacle Detection Using MmWave Radar and Vision Sensor , 2020, Sensors.

[135]  Dariu M. Gavrila,et al.  CNN Based Road User Detection Using the 3D Radar Cube , 2020, IEEE Robotics and Automation Letters.

[136]  Sufyan Almajali,et al.  A Systematic Review on Fusion Techniques and Approaches Used in Applications , 2020, IEEE Access.

[137]  Pheng Ann Heng,et al.  Unpaired Multi-Modal Segmentation via Knowledge Distillation , 2020, IEEE Transactions on Medical Imaging.

[138]  Felix Heide,et al.  Seeing Around Street Corners: Non-Line-of-Sight Detection and Tracking In-the-Wild Using Doppler Radar , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[139]  Dragomir Anguelov,et al.  Scalability in Perception for Autonomous Driving: Waymo Open Dataset , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[140]  Chris Xiaoxuan Lu,et al.  See through smoke: robust indoor mapping with low-cost mmWave radar , 2019, MobiSys.

[141]  Xilin Chen,et al.  Object-Contextual Representations for Semantic Segmentation , 2019, ECCV.

[142]  Du Tran,et al.  What Makes Training Multi-Modal Classification Networks Hard? , 2019, Computer Vision and Pattern Recognition.

[143]  Qiang Xu,et al.  nuScenes: A Multimodal Dataset for Autonomous Driving , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[144]  Long Chen,et al.  Robust Lane Detection From Continuous Driving Scenes Using Deep Neural Networks , 2019, IEEE Transactions on Vehicular Technology.

[145]  Felix Heide,et al.  Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen Adverse Weather , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[146]  A. Angelova,et al.  Probabilistic Object Detection: Definition and Evaluation , 2018, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[147]  Ruigang Yang,et al.  The ApolloScape Open Dataset for Autonomous Driving and Its Application , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[148]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[149]  Jinhyeong Kim,et al.  Low-level Sensor Fusion Network for 3D Vehicle Detection using Radar Range-Azimuth Heatmap and Monocular Image , 2020 .

[150]  Ingo Weber,et al.  Semantic Segmentation on 3D Occupancy Grids for Automotive Radar , 2020, IEEE Access.

[151]  Zhangjing Wang,et al.  Multi-Sensor Fusion in Automated Driving: A Survey , 2020, IEEE Access.

[152]  Xuetian Wang,et al.  Robust CFAR Detection for Multiple Targets in K-Distributed Sea Clutter Based on Machine Learning , 2019, Symmetry.

[153]  Wen Zhang,et al.  IEEE 1588-Based General and Precise Time Synchronization Method for Multiple Sensors* , 2019, 2019 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[154]  Vijay John,et al.  SO-Net: Joint Semantic Segmentation and Obstacle Detection Using Deep Fusion of Monocular Camera and Radar , 2019, PSIVT Workshops.

[155]  Vijay John,et al.  RVNet: Deep Sensor Fusion of Monocular Camera and Radar for Image-Based Obstacle Detection in Challenging Environments , 2019, PSIVT.

[156]  Xiangyu Gao,et al.  Experiments with mmWave Automotive Radar Test-bed , 2019, 2019 53rd Asilomar Conference on Signals, Systems, and Computers.

[157]  Markus Lienkamp,et al.  A Deep Learning-based Radar and Camera Sensor Fusion Architecture for Object Detection , 2019, 2019 Sensor Data Fusion: Trends, Solutions, Applications (SDF).

[158]  Michael Meyer,et al.  Deep Learning Based 3D Object Detection for Automotive Radar and Camera , 2019, 2019 16th European Radar Conference (EuRAD).

[159]  Amin Ansari,et al.  Vehicle Detection With Automotive Radar Using Deep Learning on Range-Azimuth-Doppler Tensors , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[160]  Michael Meyer,et al.  Automotive Radar Dataset for Deep Learning Based 3D Object Detection , 2019, 2019 16th European Radar Conference (EuRAD).

[161]  Sergio Saponara,et al.  Radar-on-Chip/in-Package in Autonomous Driving Vehicles and Intelligent Transport Systems: Opportunities and Challenges , 2019, IEEE Signal Processing Magazine.

[162]  Hui Zhou,et al.  Robust Multi-Modality Multi-Object Tracking , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[163]  Wenxian Yu,et al.  A quantitative Evaluation for Radar Grid Map Construction , 2019, 2019 International Conference on Electromagnetics in Advanced Applications (ICEAA).

[164]  Alexander S. Ecker,et al.  Benchmarking Robustness in Object Detection: Autonomous Driving when Winter is Coming , 2019, ArXiv.

[165]  Robert Laganière,et al.  How much real data do we actually need: Analyzing object detection performance using synthetic and real data , 2019, ArXiv.

[166]  Zdenka Babic,et al.  Automotive radar and camera fusion using Generative Adversarial Networks , 2019, Comput. Vis. Image Underst..

[167]  Moeness G. Amin,et al.  Radar-Based Human-Motion Recognition With Deep Learning: Promising applications for indoor monitoring , 2019, IEEE Signal Processing Magazine.

[168]  Hongbin Zha,et al.  Camera and LiDAR Fusion for On-road Vehicle Tracking with Reinforcement Learning , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[169]  Christian Sturm,et al.  Semantic Segmentation on Automotive Radar Maps , 2019, 2019 IEEE Intelligent Vehicles Symposium (IV).

[170]  Andrea Simonelli,et al.  Disentangling Monocular 3D Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[171]  Seong Joon Oh,et al.  CutMix: Regularization Strategy to Train Strong Classifiers With Localizable Features , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[172]  Hairong Qi,et al.  RRPN: Radar Region Proposal Network for Object Detection in Autonomous Vehicles , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[173]  Stephen Lin,et al.  RepPoints: Point Set Representation for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[174]  Alois Knoll,et al.  Targetless Rotational Auto-Calibration of Radar and Camera for Intelligent Transportation Systems , 2019, 2019 IEEE Intelligent Transportation Systems Conference (ITSC).

[175]  Qi Tian,et al.  CenterNet: Keypoint Triplets for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[176]  Klaus C. J. Dietmayer,et al.  2D Car Detection in Radar Data with PointNets , 2019, 2019 IEEE Intelligent Transportation Systems Conference (ITSC).

[177]  Xingyi Zhou,et al.  Objects as Points , 2019, ArXiv.

[178]  Hao Chen,et al.  FCOS: Fully Convolutional One-Stage Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[179]  Shaul Oron,et al.  Road Scene Understanding by Occupancy Grid Learning from Sparse Radar Clusters using Semantic Segmentation , 2019, 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW).

[180]  Vaibhav Lodhi,et al.  Object Detection and Identification Using Vision and Radar Data Fusion System for Ground-Based Navigation , 2019, 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN).

[181]  Siyang Cao,et al.  Automotive Radar Interference Mitigation Using Adaptive Noise Canceller , 2019, IEEE Transactions on Vehicular Technology.

[182]  Klaus C. J. Dietmayer,et al.  Gated2Depth: Real-Time Dense Lidar From Gated Images , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[183]  Paul Newman,et al.  Distant Vehicle Detection Using Radar and Vision , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[184]  Xingyi Zhou,et al.  Bottom-Up Object Detection by Grouping Extreme and Center Points , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[185]  Omar Y. Al-Jarrah,et al.  A Survey on 3D Object Detection Methods for Autonomous Driving Applications , 2019, IEEE Transactions on Intelligent Transportation Systems.

[186]  Yu-Chen Lin,et al.  Lane Mark and Drivable Area Detection Using a Novel Instance Segmentation Scheme , 2019, 2019 IEEE/SICE International Symposium on System Integration (SII).

[187]  Yan Wang,et al.  Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[188]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[189]  Luc Van Gool,et al.  Learning Semantic Segmentation From Synthetic Data: A Geometrically Guided Input-Output Adaptation Approach , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[190]  Roberto Cipolla,et al.  Orthographic Feature Transform for Monocular 3D Object Detection , 2018, BMVC.

[191]  Ann-Kathrin Seifert,et al.  Toward Unobtrusive In-Home Gait Analysis Based on Radar Micro-Doppler Signatures , 2018, IEEE Transactions on Biomedical Engineering.

[192]  Wolfram Burgard,et al.  Self-Supervised Model Adaptation for Multimodal Semantic Segmentation , 2018, International Journal of Computer Vision.

[193]  Hei Law,et al.  CornerNet: Detecting Objects as Paired Keypoints , 2018, International Journal of Computer Vision.

[194]  Stefan Wermter,et al.  Continual Lifelong Learning with Neural Networks: A Review , 2018, Neural Networks.

[195]  Minsuk Kahng,et al.  Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers , 2018, IEEE Transactions on Visualization and Computer Graphics.

[196]  Teck-Yian Lim,et al.  Radar and Camera Early Fusion for Vehicle Detection in Advanced Driver Assistance Systems , 2019 .

[197]  Francesco Fioranelli,et al.  Practical classification of different moving targets using automotive radar and deep neural networks , 2018, IET Radar, Sonar & Navigation.

[198]  Wei Wang,et al.  Pedestrian Detection Based on Fusion of Millimeter Wave Radar and Vision , 2018 .

[199]  Weiqiang Ren,et al.  LaneNet: Real-Time Lane Detection Networks for Autonomous Driving , 2018, ArXiv.

[200]  Jürgen Dickmann,et al.  Semantic Segmentation on Radar Point Clouds , 2018, 2018 21st International Conference on Information Fusion (FUSION).

[201]  Kun Yu,et al.  DenseASPP for Semantic Segmentation in Street Scenes , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[202]  Klaus C. J. Dietmayer,et al.  Detecting Traffic Lights by Single Shot Detection , 2018, 2018 21st International Conference on Intelligent Transportation Systems (ITSC).

[203]  Jürgen Dickmann,et al.  Supervised Clustering for Radar Applications: On the Way to Radar Instance Segmentation , 2018, 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[204]  Marcel Hoffmann,et al.  Adaptions for Automotive Radar Based Occupancy Gridmaps , 2018, 2018 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[205]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[206]  Siyang Cao,et al.  Support vector machines for classification of automotive radar interference , 2018, 2018 IEEE Radar Conference (RadarConf18).

[207]  Bin Fan,et al.  Traffic Sign Recognition Using a Multi-Task Convolutional Neural Network , 2018, IEEE Transactions on Intelligent Transportation Systems.

[208]  Bernt Schiele,et al.  Towards Reaching Human Performance in Pedestrian Detection , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[209]  K. Madhava Krishna,et al.  CalibNet: Geometrically Supervised Extrinsic Calibration using 3D Spatial Transformer Networks , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[210]  Kang Kim,et al.  Simultaneous Traffic Sign Detection and Boundary Estimation Using Convolutional Neural Network , 2018, IEEE Transactions on Intelligent Transportation Systems.

[211]  Luc Van Gool,et al.  Towards End-to-End Lane Detection: an Instance Segmentation Approach , 2018, 2018 IEEE Intelligent Vehicles Symposium (IV).

[212]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[213]  Bin Yang,et al.  SBNet: Sparse Blocks Network for Fast Inference , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[214]  Steven Lake Waslander,et al.  Joint 3D Proposal Generation and Object Detection from View Aggregation , 2017, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[215]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[216]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[217]  David J. Crandall,et al.  Minimizing Supervision for Free-Space Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[218]  Trevor Darrell,et al.  Deep Layer Aggregation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[219]  Wojciech Samek,et al.  Methods for interpreting and understanding deep neural networks , 2017, Digit. Signal Process..

[220]  Garrison W. Cottrell,et al.  Understanding Convolution for Semantic Segmentation , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[221]  Sanja Fidler,et al.  3D Object Proposals Using Stereo Imagery for Accurate Object Class Detection , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[222]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[223]  Roman Henze,et al.  High Resolution Radar-based Occupancy Grid Mapping and Free Space Detection , 2018, VEHITS.

[224]  Tao Zhang,et al.  A Survey of Model Compression and Acceleration for Deep Neural Networks , 2017, ArXiv.

[225]  Germán Ros,et al.  CARLA: An Open Urban Driving Simulator , 2017, CoRL.

[226]  Satoshi Tsutsui,et al.  Distantly Supervised Road Segmentation , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[227]  Jiangtao Huangfu,et al.  Doppler-Radar Based Hand Gesture Recognition System Using Convolutional Neural Networks , 2017, CSPS.

[228]  Jiman Kim,et al.  End-To-End Ego Lane Estimation Based on Sequential Transfer Learning for Self-Driving Cars , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[229]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[230]  Klaus C. J. Dietmayer,et al.  Multi-camera traffic light recognition using a classifying Labeled Multi-Bernoulli filter , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[231]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[232]  Jürgen Dickmann,et al.  Optimizing labelling on radar-based grid maps using active learning , 2017, 2017 18th International Radar Symposium (IRS).

[233]  Jürgen Dickmann,et al.  Semantic radar grids , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[234]  Karsten Behrendt,et al.  A deep learning approach to traffic lights: Detection, tracking, and classification , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[235]  Abdelhak M. Zoubir,et al.  New analysis of radar micro-Doppler gait signatures for rehabilitation and assisted living , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[236]  Jürgen Dickmann,et al.  Object classification in radar using ensemble methods , 2017, 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[237]  Hermann Winner,et al.  Deep stochastic radar models , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[238]  Sergio Saponara,et al.  Radar Sensor Signal Acquisition and Multidimensional FFT Processing for Surveillance Applications in Transport Systems , 2017, IEEE Transactions on Instrumentation and Measurement.

[239]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[240]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[241]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[242]  Xiaogang Wang,et al.  Pyramid Scene Parsing Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[243]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[244]  Bo Li,et al.  3D fully convolutional network for vehicle detection in point cloud , 2016, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[245]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[246]  Roberto Cipolla,et al.  SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[247]  Markus Thom,et al.  Rapid Exact Signal Scanning With Deep Convolutional Neural Networks , 2015, IEEE Transactions on Signal Processing.

[248]  Sandeep Rao,et al.  The fundamentals of millimeter wave sensors , 2017 .

[249]  Seong-Ook Park,et al.  Drone Classification Using Convolutional Neural Networks With Merged Doppler Images , 2017, IEEE Geoscience and Remote Sensing Letters.

[250]  Paulo Peixoto,et al.  3D object tracking using RGB and LIDAR data , 2016, 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC).

[251]  Bernardo Wagner,et al.  Radar and LiDAR Sensorfusion in Low Visibility Environments , 2016, ICINCO.

[252]  Liang Lin,et al.  Is Faster R-CNN Doing Well for Pedestrian Detection? , 2016, ECCV.

[253]  Baoli Li,et al.  Traffic-Sign Detection and Classification in the Wild , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[254]  Sanja Fidler,et al.  Monocular 3D Object Detection for Autonomous Driving , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[255]  Johan Degerman,et al.  3D occupancy grid mapping using statistical radar models , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[256]  Johann Marius Zöllner,et al.  DeepTLR: A single deep convolutional network for detection and classification of traffic lights , 2016, 2016 IEEE Intelligent Vehicles Symposium (IV).

[257]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[258]  Eugenio Culurciello,et al.  ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation , 2016, ArXiv.

[259]  Markus Hahn,et al.  Potential of radar for static object classification using deep learning methods , 2016, 2016 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[260]  Emilio Frazzoli,et al.  A Survey of Motion Planning and Control Techniques for Self-Driving Urban Vehicles , 2016, IEEE Transactions on Intelligent Vehicles.

[261]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[262]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[263]  Song Han,et al.  Deep Compression: Compressing Deep Neural Network with Pruning, Trained Quantization and Huffman Coding , 2015, ICLR.

[264]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[265]  Youngwook Kim,et al.  Human Detection and Activity Classification Based on Micro-Doppler Signatures Using Deep Convolutional Neural Networks , 2016, IEEE Geoscience and Remote Sensing Letters.

[266]  Amit Kumar Mishra,et al.  Comparison of square law, linear and bessel detectors for CA and OS CFAR algorithms , 2015, 2015 IEEE Radar Conference.

[267]  Yi Yang,et al.  DenseBox: Unifying Landmark Localization with End to End Object Detection , 2015, ArXiv.

[268]  Miguel Oliveira,et al.  Multimodal inverse perspective mapping , 2015, Inf. Fusion.

[269]  Markus Hahn,et al.  Detection of arbitrarily rotated parked cars based on radar sensors , 2015, 2015 16th International Radar Symposium (IRS).

[270]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[271]  Avideh Zakhor,et al.  Sensor fusion for semantic segmentation of urban scenes , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[272]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[273]  David Ball,et al.  TriggerSync: A time synchronisation tool , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[274]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[275]  Jens Klappstein,et al.  Automotive radar gridmap representations , 2015, 2015 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM).

[276]  Rama Chellappa,et al.  Visual Domain Adaptation: A survey of recent advances , 2015, IEEE Signal Processing Magazine.

[277]  Iasonas Kokkinos,et al.  Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs , 2014, ICLR.

[278]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[279]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[280]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[281]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[282]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[283]  Max Welling,et al.  Semi-supervised Learning with Deep Generative Models , 2014, NIPS.

[284]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[285]  Roland Siegwart,et al.  Unified temporal and spatial calibration for multi-sensor systems , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[286]  José E. Guivant,et al.  Distributed multi sensor data fusion for autonomous 3D mapping , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[287]  Shiqi Li,et al.  A Robust O(n) Solution to the Perspective-n-Point Problem , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[288]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[289]  Klaus Dietmayer,et al.  Temporal synchronization in multi-sensor fusion for future driver assistance systems , 2011, 2011 IEEE International Symposium on Precision Clock Synchronization for Measurement, Control and Communication.

[290]  Klaus C. J. Dietmayer,et al.  Precise timestamping and temporal synchronization in multi-sensor fusion , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[291]  Edwin Olson,et al.  A passive solution to the sensor synchronization problem , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[292]  Qiang Yang,et al.  A Survey on Transfer Learning , 2010, IEEE Transactions on Knowledge and Data Engineering.

[293]  Gudrun Klinker,et al.  Temporal calibration in multisensor tracking setups , 2009, 2009 8th IEEE International Symposium on Mixed and Augmented Reality.

[294]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[295]  Ah Chung Tsoi,et al.  The Graph Neural Network Model , 2009, IEEE Transactions on Neural Networks.

[296]  Feng Liu,et al.  IMMPDA vehicle tracking system using asynchronous sensor fusion of radar and vision , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[297]  R. N. Anderton,et al.  Millimeter-Wave and Submillimeter-Wave Imaging for Security and Surveillance , 2007, Proceedings of the IEEE.

[298]  Hao Ling,et al.  Time-Frequency Transforms for Radar Imaging and Signal Analysis , 2002 .

[299]  L. Nicolaescu,et al.  Radar cross section , 2001, 5th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Service. TELSIKS 2001. Proceedings of Papers (Cat. No.01EX517).

[300]  J. T. Mayhan,et al.  Ultrawide-band coherent processing , 1999 .

[301]  Massimo Bertozzi,et al.  Stereo inverse perspective mapping: theory and applications , 1998, Image Vis. Comput..

[302]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[303]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[304]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[305]  Geoffrey E. Hinton,et al.  Adaptive Mixtures of Local Experts , 1991, Neural Computation.

[306]  Saleem A. Kassam,et al.  Analysis of CFAR processors in homogeneous background , 1988 .

[307]  Hermann Rohling,et al.  Radar CFAR Thresholding in Clutter and Multiple Target Situations , 1983, IEEE Transactions on Aerospace and Electronic Systems.

[308]  M. Weiss,et al.  Analysis of Some Modified Cell-Averaging CFAR Processors in Multiple-Target Situations , 1982, IEEE Transactions on Aerospace and Electronic Systems.

[309]  V. Hansen,et al.  Detectability Loss Due to "Greatest Of" Selection in a Cell-Averaging CFAR , 1980, IEEE Transactions on Aerospace and Electronic Systems.

[310]  G. Trunk Range Resolution of Targets Using Automatic Detectors , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[311]  John Rickard,et al.  Adaptive detection algorithms for multiple-target spectral data , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.