Optimization Techniques for Portfolio Selection

Portfolio selection is a vital part of financial management and investment decision making. Optimization techniques can be effi ciently used to solve many classes of portfolio selection problems (e.g. the classical Markowitz mean-variance model). In this paper we present optimization algorithms and discuss certain computational complexity issues related to portfolio selection problems.

[1]  Hiroshi Konno,et al.  OUTER APPROXIMATION ALGORITHMS FOR LOWER RANK BILINEAR PROGRAMMING PROBLEMS , 1995 .

[2]  Ron S. Dembo,et al.  Scenario optimization , 1991, Ann. Oper. Res..

[3]  Panos M. Pardalos,et al.  Polynomial time algorithms for some classes of constrained nonconvex quadratic problems , 1990 .

[4]  John M. Mulvey,et al.  OR Practice - Large-Scale Nonlinear Network Models and Their Application , 1989, Oper. Res..

[5]  Hiroshi Konno,et al.  BOND PORTFOLIO OPTIMIZATION BY BILINEAR FRACTIONAL PROGRAMMING , 1989 .

[6]  P. Pardalos,et al.  Handbook of global optimization , 1995 .

[7]  Colin Atkinson,et al.  Portfolio management with transaction costs , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  William T. Ziemba,et al.  Growth-security profiles in capital accumulation under risk , 1991, Ann. Oper. Res..

[9]  S. Schaible Fractional programming: Applications and algorithms , 1981 .

[10]  I. Androulakis,et al.  Solving long-term financial planning problems via global optimization , 1997 .

[11]  K. Feldman Portfolio Selection, Efficient Diversification of Investments . By Harry M. Markowitz (Basil Blackwell, 1991) £25.00 , 1992 .

[12]  W. Arthur,et al.  Complexity in Economic and Financial Markets , 1995 .

[13]  John M. Mulvey,et al.  Applying the progressive hedging algorithm to stochastic generalized networks , 1991, Ann. Oper. Res..

[14]  C. R. Bector,et al.  Fractional Programming-Some Recent Results , 1990 .

[15]  J. Tobin Liquidity Preference as Behavior towards Risk , 1958 .

[16]  Marc Teboulle,et al.  Portfolio theory for the recourse certainty equivalent maximizing investor , 1991, Ann. Oper. Res..

[17]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[18]  Jati Kumar Sengupta,et al.  Stochastic optimization and economic models , 1986 .

[19]  Pierre Hansen,et al.  Reformulation of Two Bond Portfolio Optimization Models , 1991 .

[20]  André F. Perold,et al.  Large-Scale Portfolio Optimization , 1984 .

[21]  Panos M. Pardalos,et al.  Global optimization of fractional programs , 1991, J. Glob. Optim..

[22]  M. David,et al.  CUTLER, POTERBA and SUMMERS, . What moves stock prices?, Journal of Portfolio Management, , . , 1989 .

[23]  Panos M. Pardalos An algorithm for a class of nonlinear fractional problems using ranking of the vertices , 1986 .

[24]  P. Pardalos,et al.  On the use of optimization models for portfolio selection: A review and some computational results , 1994 .

[25]  Panos M. Pardalos,et al.  Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.

[26]  J. Barkley Rosser,et al.  From Catastrophe to Chaos: A General Theory of Economic Discontinuities , 1991 .

[27]  W. Brian Arthur,et al.  Complexity in economic and financial markets: Behind the physical institutions and technologies of the marketplace lie the beliefs and expectations of real human beings , 1995, Complex..

[28]  P. McEntire Portfolio Theory for Independent Assets , 1984 .

[29]  W. Ziemba,et al.  Calculation of Investment Portfolios with Risk Free Borrowing and Lending , 1974 .

[30]  Stephen F. Witt,et al.  Portfolio theory and investment management , 1994 .

[31]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[32]  A. Nagurney,et al.  Formulation and computation of general financial equilibrium , 1992 .

[33]  K. Mäler,et al.  Nobel Lectures in Economic Sciences 1981 – 1990:The Sveriges Riksbank (Bank of Sweden) Prize in Economic Sciences in Memory of Alfred Nobel , 1992 .

[34]  Stephen M. Robinson Extended scenario analysis , 1991, Ann. Oper. Res..

[35]  Assar Lindbeck Nobel Lectures in Economic Sciences 1969 – 1980: The Sveriges Riksbank (Bank of Sweden) Prize in Economic Sciences in Memory of Alfred Nobel , 1992 .

[36]  C. K. Jones,et al.  A Stochastic Generalized Network Model and Large-Scale Mean-Variance Algorithm for Portfolio Selection , 1988 .

[37]  Alan J. King,et al.  Tracking models and the optimal regret distribution in asset allocation , 1992 .

[38]  W. Hager Analysis and implementation of a dual algorithm for constrained optimization , 1993 .

[39]  Anna Nagurney,et al.  Variational inequalities in the analysis and computation of multi-sector, multi-instrument financial equilibria☆ , 1994 .

[40]  Aharon Ben-Tal,et al.  A recourse certainty equivalent for decisions under uncertainty , 1991, Ann. Oper. Res..

[41]  S. Schaible,et al.  Introduction to Generalized Convexity , 1990 .

[42]  Darrell Duffie,et al.  Transactions costs and portfolio choice in a discrete-continuous-time setting , 1990 .

[43]  Benjamin F. Plybon An introduction to applied numerical analysis , 1992 .

[44]  B. Malkiel A Random Walk Down Wall Street , 1973 .

[45]  S. Pliska,et al.  OPTIMAL PORTFOLIO MANAGEMENT WITH FIXED TRANSACTION COSTS , 1995 .

[46]  Jacques A. Ferland,et al.  IMPROVED ANALYSIS OF THE GENERALIZED CONVEXITY OF A FUNCTION IN PORTFOLIO THEORY , 1990 .

[47]  John L. Maginn,et al.  Managing Investment Portfolios: A Dynamic Process/1985-1986 Update , 1985 .

[48]  R. Green,et al.  Positively Weighted Portfolios on the Minimum-Variance Frontier , 1986 .

[49]  J. Lintner THE VALUATION OF RISK ASSETS AND THE SELECTION OF RISKY INVESTMENTS IN STOCK PORTFOLIOS AND CAPITAL BUDGETS , 1965 .

[50]  J. Poterba,et al.  What moves stock prices? , 1988 .

[51]  I. M. Stancu-Minasian,et al.  On Some Fractional Programming Models Occurring in Minimum-Risk Problems , 1990 .