Segmentation Framework Based on Label Field Fusion

In this paper, we put forward a novel fusion framework that mixes together label fields instead of observation data as is usually the case. Our framework takes as input two label fields: a quickly estimated and to-be-refined segmentation map and a spatial region map that exhibits the shape of the main objects of the scene. These two label fields are fused together with a global energy function that is minimized with a deterministic iterative conditional mode algorithm. As explained in the paper, the energy function may implement a pure fusion strategy or a fusion-reaction function. In the latter case, a data-related term is used to make the optimization problem well posed. We believe that the conceptual simplicity, the small number of parameters, the use of a simple and fast deterministic optimizer that admits a natural implementation on a parallel architecture are among the main advantages of our approach. Our fusion framework is adapted to various computer vision applications among which are motion segmentation, motion estimation and occlusion detection.

[1]  Max Mignotte,et al.  Motion Segmentation Using a K-Nearest-Neighbor-Based Fusion Procedure of Spatial and Temporal Label Cues , 2005, ICIAR.

[2]  Paul Smith,et al.  Layered motion segmentation and depth ordering by tracking edges , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Jian Sun,et al.  Symmetric stereo matching for occlusion handling , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[4]  Max Mignotte,et al.  A segmentation-based regularization term for image deconvolution , 2006, IEEE Transactions on Image Processing.

[5]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[6]  An Luo,et al.  An intensity-based cooperative bidirectional stereo matching with simultaneous detection of discontinuities and occlusions , 1995, International Journal of Computer Vision.

[7]  David J. Fleet,et al.  Computation of component image velocity from local phase information , 1990, International Journal of Computer Vision.

[8]  Eric Dubois,et al.  Bayesian Estimation of Motion Vector Fields , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[10]  Petros Maragos,et al.  Region-based optical flow estimation , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[11]  C. Stiller,et al.  Estimating motion in image sequences , 1999, IEEE Signal Process. Mag..

[12]  P. Anandan,et al.  A computational framework and an algorithm for the measurement of visual motion , 1987, International Journal of Computer Vision.

[13]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[14]  J.-Y. Bouguet,et al.  Pyramidal implementation of the lucas kanade feature tracker , 1999 .

[15]  Janusz Konrad,et al.  Geometry-based estimation of occlusions from video frame pairs , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[16]  Rachid Deriche,et al.  Computing Optical Flow via Variational Techniques , 1999, SIAM J. Appl. Math..

[17]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[18]  Alan L. Yuille,et al.  Occlusions and binocular stereo , 1992, International Journal of Computer Vision.

[19]  Yvan R. Petillot,et al.  The fusion of large scale classified side-scan sonar image mosaics , 2006, IEEE Transactions on Image Processing.

[20]  Geoffrey Egnal,et al.  Detecting Binocular Half-Occlusions: Empirical Comparisons of Five Approaches , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[22]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[23]  Azriel Rosenfeld,et al.  Detection and location of people in video images using adaptive fusion of color and edge information , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[24]  Fernand Meyer,et al.  A novel approach to depth ordering in monocular image sequences , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[25]  Pascal Fua,et al.  A parallel stereo algorithm that produces dense depth maps and preserves image features , 1993, Machine Vision and Applications.

[26]  Wojciech Pieczynski,et al.  Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Joachim Weickert,et al.  Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods , 2005, International Journal of Computer Vision.

[28]  D Marr,et al.  Cooperative computation of stereo disparity. , 1976, Science.

[29]  Konstantinos N. Plataniotis,et al.  Retrieval of images from artistic repositories using a decision fusion framework , 2004, IEEE Transactions on Image Processing.

[30]  Wojciech Pieczynski,et al.  Multisensor triplet Markov fields and theory of evidence , 2006, Image Vis. Comput..

[31]  David W. Murray,et al.  Scene Segmentation from Visual Motion Using Global Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  Hongyi Li,et al.  Object recognition in brain CT-scans: knowledge-based fusion of data from multiple feature extractors , 1995, IEEE Trans. Medical Imaging.

[33]  Issam Dagher,et al.  Face recognition using IPCA-ICA algorithm , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Joachim Weickert,et al.  Reliable Estimation of Dense Optical Flow Fields with Large Displacements , 2000, International Journal of Computer Vision.

[35]  Michael S. Langer,et al.  Optical Snow , 2003, International Journal of Computer Vision.

[36]  C. Stiller,et al.  Estimating Motion in Image Sequences A tutorial on modeling and computation of 2 D motion , 2022 .

[37]  Amitabha Das,et al.  Estimation of Occlusion and Dense Motion Fields in a Bidirectional Bayesian Framework , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[39]  David G. Stork,et al.  Pattern Classification , 1973 .

[40]  Anil K. Jain,et al.  Texture fusion and feature selection applied to SAR imagery , 1997, IEEE Trans. Geosci. Remote. Sens..

[41]  Jean-Marie Nicolas,et al.  Application of log-cumulants to the detection of spatiotemporal discontinuities in multitemporal SAR images , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[42]  Michael J. Black,et al.  Estimating Optical Flow in Segmented Images Using Variable-Order Parametric Models With Local Deformations , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Shankar Chatterjee,et al.  On an analysis of static occlusion in stereo vision , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Christoph Stiller,et al.  Object-oriented video coding employing dense motion fields , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[45]  David A. Clausi,et al.  Design-based texture feature fusion using Gabor filters and co-occurrence probabilities , 2005, IEEE Transactions on Image Processing.

[46]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[47]  Emmanuel Trouvé,et al.  Linear features extraction in rain forest context from interferometric SAR images by fusion of coherence and amplitude information , 2003, IEEE Trans. Geosci. Remote. Sens..

[48]  Jean-Marc Odobez,et al.  Robust Multiresolution Estimation of Parametric Motion Models , 1995, J. Vis. Commun. Image Represent..

[49]  Josef Bigün,et al.  Unsupervised feature reduction in image segmentation by local transforms , 1993, Pattern Recognit. Lett..

[50]  Luc Van Gool,et al.  A Probabilistic Approach to Large Displacement Optical Flow and Occlusion Detection , 2004, ECCV Workshop SMVP.

[51]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Mubarak Shah,et al.  Object based segmentation of video using color, motion and spatial information , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[53]  Bedrich J. Hosticka,et al.  An unsupervised texture segmentation algorithm with feature space reduction and knowledge feedback , 1998, IEEE Trans. Image Process..

[54]  Shang-Hong Lai,et al.  Reliable and Efficient Computation of Optical Flow , 1998, International Journal of Computer Vision.

[55]  A. Murat Tekalp,et al.  Simultaneous motion estimation and segmentation , 1997, IEEE Trans. Image Process..

[56]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[57]  Max Mignotte,et al.  Markovian segmentation and parameter estimation on graphics hardware , 2006, J. Electronic Imaging.

[58]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[59]  Christophe Rosenberger,et al.  Detecting Half-Occlusion with a Fast Region-Based Fusion Procedure , 2006, BMVC.

[60]  Daniel DeMenthon,et al.  A Survey of Spatio-Temporal Grouping Techniques , 2002 .

[61]  W. B. Thompson,et al.  Combining motion and contrast for segmentation , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Ambuj K. Singh,et al.  Dimensionality reduction for similarity searching in dynamic databases , 1998, SIGMOD '98.

[63]  Edward H. Adelson,et al.  Probability distributions of optical flow , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[64]  Hans-Hellmut Nagel,et al.  On the Estimation of Optical Flow: Relations between Different Approaches and Some New Results , 1987, Artif. Intell..

[65]  D. Scharstein,et al.  A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms , 2001, Proceedings IEEE Workshop on Stereo and Multi-Baseline Vision (SMBV 2001).

[66]  Eric Dubois,et al.  Motion estimation with detection of occlusion areas , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[67]  Li Hong,et al.  Segment-based stereo matching using graph cuts , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[68]  David G. Stork,et al.  Pattern Classification (2nd ed.) , 1999 .

[69]  Qionghai Dai,et al.  Similarity-based online feature selection in content-based image retrieval , 2006, IEEE Transactions on Image Processing.

[70]  Zoltan Kato,et al.  Multicue MRF image segmentation: combining texture and color features , 2002, Object recognition supported by user interaction for service robots.

[71]  DericheRachid,et al.  Symmetrical Dense Optical Flow Estimation with Occlusions Detection , 2007 .

[72]  Arthur Filippidis,et al.  Using genetic algorithms and neural networks for surface land mine detection , 1999, IEEE Trans. Signal Process..

[73]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[74]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  Long Quan,et al.  Region-based progressive stereo matching , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[76]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[77]  Margrit Gelautz,et al.  A layered stereo matching algorithm using image segmentation and global visibility constraints , 2005 .

[78]  Vladimir Kolmogorov,et al.  Computing visual correspondence with occlusions using graph cuts , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[79]  Joachim Weickert,et al.  Variational Optic Flow Computation with a Spatio-Temporal Smoothness Constraint , 2001, Journal of Mathematical Imaging and Vision.

[80]  Chengjun Liu,et al.  Capitalize on dimensionality increasing techniques for improving face recognition grand challenge performance , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Pierre Lanchantin,et al.  Statistical image segmentation using triplet Markov fields , 2003, SPIE Remote Sensing.

[82]  P. Bouthemy,et al.  Recovery of moving object masks in an image sequence using local spatiotemporal contextual information , 1993 .

[83]  Michael J. Black Combining Intensity and Motion for Incremental Segmentation and Tracking Over Long Image Sequences , 1992, ECCV.

[84]  Guojun Lu,et al.  Segmentation of moving objects in image sequence: A review , 2001 .

[85]  Anil K. Jain,et al.  Unsupervised texture segmentation using Gabor filters , 1990, 1990 IEEE International Conference on Systems, Man, and Cybernetics Conference Proceedings.

[86]  A. Murat Tekalp,et al.  Region-Based Parametric Motion Segmentation Using Color Information , 1998, Graph. Model. Image Process..

[87]  Patrick Pérez,et al.  Hierarchical Estimation and Segmentation of Dense Motion Fields , 2002, International Journal of Computer Vision.

[88]  오승준 [서평]「Digital Video Processing」 , 1996 .

[89]  Joachim Weickert,et al.  On Discontinuity-Preserving Optic Flow , 1998 .

[90]  Rachid Deriche,et al.  Symmetrical Dense Optical Flow Estimation with Occlusions Detection , 2002, ECCV.

[91]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..