Essays on nonlinear evolutionary game dynamics

Evolutionary game theory has been viewed as an evolutionary repair of rational actor game theory in the hope that a population of boundedly rational players may attain convergence to classic rational solutions, such as the Nash Equilibrium, via some learning or evolutionary process. In this thesis the model of boundedly rational players is a perturbed version of the best-reply choice, the so-called Logit rule. With the strategic context varying from models of cyclical competition (Rock-Paper-Scissors), through industrial organization (Cournot) and to collective-action choice (Iterated Prisoner’s Dilemma), we show that the Logit evolutionary selection among boundedly rational strategies does not necessarily guarantee convergence to equilibrium and a richer dynamical behavior - e.g. cycles, chaos - may be the rule rather than the exception.

[1]  A. Cournot Researches into the Mathematical Principles of the Theory of Wealth , 1898, Forerunners of Realizable Values Accounting in Financial Reporting.

[2]  J. Robinson AN ITERATIVE METHOD OF SOLVING A GAME , 1951, Classics in Game Theory.

[3]  O. H. Brownlee,et al.  ACTIVITY ANALYSIS OF PRODUCTION AND ALLOCATION , 1952 .

[4]  R. D. Theocharis On the Stability of the Cournot Solution on the Oligopoly Problem , 1960 .

[5]  K. Miyasawa ON THE CONVERGENCE OF THE LEARNING PROCESS IN A 2 X 2 NON-ZERO-SUM TWO-PERSON GAME , 1961 .

[6]  Frank Hahn,et al.  The Stability of the Cournot Oligopoly Solution , 1962 .

[7]  M. McManus EQUILIBRIUM, NUMBERS AND SIZE IN COURNOT OLIGOPOLY1 , 1964 .

[8]  J. Kemeny,et al.  Denumerable Markov chains , 1969 .

[9]  Koji Okuguchi,et al.  Adaptive Expectations in an Oligopoly Model , 1970 .

[10]  S. Vajda Some topics in two-person games , 1971 .

[11]  Robert Deschamps,et al.  An algorithm of game theory applied to the duopoly problem , 1975 .

[12]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[13]  David A. Rand,et al.  Exotic phenomena in games and duopoly models , 1978 .

[14]  P. Schuster,et al.  Dynamical Systems Under Constant Organization II: Homogeneous Growth Functions of Degree $p = 2$ , 1980 .

[15]  E. C. Zeeman,et al.  Population dynamics from game theory , 1980 .

[16]  E. Zeeman Dynamics of the evolution of animal conflicts , 1981 .

[17]  E. Akin Cycling in simple genetic systems , 1982 .

[18]  Ken Binmore,et al.  Modeling Rational Players: Part I , 1987, Economics and Philosophy.

[19]  J Hofbauer,et al.  The "battle of the sexes": a genetic model with limit cycle behavior. , 1987, Theoretical population biology.

[20]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[21]  John Nachbar “Evolutionary” selection dynamics in games: Convergence and limit properties , 1990 .

[22]  L. Thorlund-Petersen Iterative computation of cournot equilibrium , 1990 .

[23]  P. Schuster,et al.  Dynamics of small autocatalytic reaction networks--I. Bifurcations, permanence and exclusion. , 1990, Bulletin of mathematical biology.

[24]  Paul R. Milgrom,et al.  Adaptive and sophisticated learning in normal form games , 1991 .

[25]  I. Gilboa,et al.  Social Stability and Equilibrium , 1991 .

[26]  Franz J. Weissing,et al.  Evolutionary stability and dynamic stability in a class of evolutionary normal form games , 1991 .

[27]  Christian V. Forst,et al.  Full characterization of a strange attractor: Chaotic dynamics in low-dimensional replicator system , 1991 .

[28]  L. Samuelson,et al.  Evolutionary Stability in Asymmetric Games , 1992 .

[29]  BRIAN SKYRMS,et al.  Chaos in game dynamics , 1992, J. Log. Lang. Inf..

[30]  R. Rob,et al.  Learning, Mutation, and Long Run Equilibria in Games , 1993 .

[31]  M. Nowak,et al.  Chaos and the evolution of cooperation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Jordan Three Problems in Learning Mixed-Strategy Nash Equilibria , 1993 .

[33]  S. Rassenti,et al.  The stability of the cournot solution under adaptive expectation: A further generalization , 1994 .

[34]  L. Shapley,et al.  Potential Games , 1994 .

[35]  Ariel Rubinstein,et al.  A Course in Game Theory , 1995 .

[36]  D. Kraines,et al.  Evolution of Learning among Pavlov Strategies in a Competitive Environment with Noise , 1995 .

[37]  C. Leake Discrete Choice Theory of Product Differentiation , 1995 .

[38]  Fernando Vega Redondo,et al.  The evolution of walrasian behavior , 1996 .

[39]  L. Shapley,et al.  Fictitious Play Property for Games with Identical Interests , 1996 .

[40]  J. Weibull,et al.  Evolutionary Selection against dominated strategies , 1996 .

[41]  Michael Kopel,et al.  Simple and complex adjustment dynamics in Cournot duopoly models , 1996 .

[42]  Dean P. Foster,et al.  On the Nonconvergence of Fictitious Play in Coordination Games , 1998 .

[43]  Diana Richards The geometry of inductive reasoning in games , 1997 .

[44]  Ross Cressman,et al.  Local stability of smooth selection dynamics for normal form games , 1997 .

[45]  Daniel Friedman,et al.  Individual Learning in Normal Form Games: Some Laboratory Results☆☆☆ , 1997 .

[46]  R. Axelrod Reviews book & software , 2022 .

[47]  William A. Brock,et al.  A rational route to randomness , 1997 .

[48]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[49]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[50]  Andrew M. Colman,et al.  The complexity of cooperation: Agent-based models of competition and collaboration , 1998, Complex..

[51]  Mark A Walker,et al.  Learning to play Cournot duopoly strategies , 1998 .

[52]  D. Fudenberg,et al.  The Theory of Learning in Games , 1998 .

[53]  P. Todd,et al.  Simple Heuristics That Make Us Smart , 1999 .

[54]  S. Hahn The convergence of fictitious play in 3×3 games with strategic complementarities , 1999 .

[55]  S. Rassenti,et al.  Adaptation and Convergence of Behavior in Repeated Experimental Cournot Games , 2000 .

[56]  H. Peyton Young,et al.  Adaptive Dynamics in Games Played by Heterogeneous Populations , 2000, Games Econ. Behav..

[57]  D P Kraines,et al.  Natural selection of memory-one strategies for the iterated prisoner's dilemma. , 2000, Journal of theoretical biology.

[58]  B. Skyrms Stability and Explanatory Significance of Some Simple Evolutionary Models , 2000, Philosophy of Science.

[59]  Carlos Alós-Ferrer,et al.  Cournot versus Walras in dynamic oligopolies with memory , 2004 .

[60]  J. Hofbauer From Nash and Brown to Maynard Smith: Equilibria, Dynamics and ESS , 2001 .

[61]  Eizo Akiyama,et al.  Chaos in learning a simple two-person game , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Wei-Torng Juang,et al.  Rule Evolution and Equilibrium Selection , 2002, Games Econ. Behav..

[63]  William H. Sandholm,et al.  ON THE GLOBAL CONVERGENCE OF STOCHASTIC FICTITIOUS PLAY , 2002 .

[64]  Jan Tuinstra,et al.  Endogenous fluctuations under evolutionary pressure in Cournot competition , 2002, Games Econ. Behav..

[65]  Colin Camerer Behavioral Game Theory: Experiments in Strategic Interaction , 2003 .

[66]  Willy Govaerts,et al.  Cl_matcont: a continuation toolbox in Matlab , 2003, SAC '03.

[67]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[68]  Ulrich Berger Fictitious play in 2xn games , 2003 .

[69]  Immanuel M. Bomze,et al.  Lotka-Volterra equation and replicator dynamics: new issues in classification , 1995, Biological Cybernetics.

[70]  I. Bomze Lotka-Volterra equation and replicator dynamics: A two-dimensional classification , 1983, Biological Cybernetics.

[71]  Ulrich Berger,et al.  Fictitious play in 2×n games , 2005, J. Econ. Theory.

[72]  William H. Sandholm,et al.  Excess payoff dynamics and other well-behaved evolutionary dynamics , 2005, J. Econ. Theory.

[73]  William H. Sandholm,et al.  Deterministic Evolutionary Dynamics , 2005 .

[74]  Cars Hommes,et al.  A robust rational route to randomness in a simple asset pricing model , 2005 .

[75]  Karl Sigmund,et al.  The good, the bad and the discriminator--errors in direct and indirect reciprocity. , 2006, Journal of theoretical biology.

[76]  D. Fudenberg,et al.  Tit-for-tat or win-stay, lose-shift? , 2007, Journal of theoretical biology.

[77]  Ulrich Berger,et al.  Two more classes of games with the continuous-time fictitious play property , 2007, Games Econ. Behav..

[78]  Sofia B. S. D. Castro,et al.  Chaotic and deterministic switching in a two-person game , 2008 .

[79]  Ulrich Berger Learning in games with strategic complementarities revisited , 2008, J. Econ. Theory.

[80]  Sebastian van Strien,et al.  Fictitious play in 3×3 games: The transition between periodic and chaotic behaviour , 2008, Games Econ. Behav..

[81]  Sebastian van Strien,et al.  Fictitious play in 3x3 games: Chaos and dithering behaviour , 2011, Games Econ. Behav..