The Quadratic Eigenvalue Problem

We survey the quadratic eigenvalue problem, treating its many applications, its mathematical properties, and a variety of numerical solution techniques. Emphasis is given to exploiting both the structure of the matrices in the problem (dense, sparse, real, complex, Hermitian, skew-Hermitian) and the spectral properties of the problem. We classify numerical methods and catalogue available software.

[1]  Ray-Sing Lin,et al.  On the stability of attachment-line boundary layers. Part 2. The effect of leading-edge curvature , 1997, Journal of Fluid Mechanics.

[2]  Eric James Grimme,et al.  Krylov Projection Methods for Model Reduction , 1997 .

[3]  Daniel Skoogh A rational Krylov method for model order reduction , 1998 .

[4]  Axel Ruhe,et al.  Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..

[5]  Zhaojun Bai,et al.  Error Estimation of the Padé Approximation of Transfer Functions via the Lanczos Process , 1998 .

[6]  V. Mehrmann,et al.  A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .

[7]  N. Higham,et al.  Numerical analysis of a quadratic matrix equation , 2000 .

[8]  J. Eisenfeld Quadratic eigenvalue problems , 1968 .

[9]  A. Bunse-Gerstner,et al.  A symplectic QR like algorithm for the solution of the real algebraic Riccati equation , 1986 .

[10]  Raj Mittra,et al.  Finite element solution of electromagnetic problems over a wide frequency range via the Padé approximation , 1999 .

[11]  J. H. Wilkinson,et al.  Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .

[12]  R. Duffin The Rayleigh-Ritz method for dissipative or gyroscopic systems , 1960 .

[13]  Carmen Chicone,et al.  A generalization of the inertia theorem for quadratic matrix polynomials , 1998 .

[14]  Allan D. Pierce,et al.  Acoustics , 1989 .

[15]  Qiang Ye,et al.  ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[16]  Volker Mehrmann,et al.  Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..

[17]  T. Zheng,et al.  A generalized inverse iteration method for solution of quadratic eigenvalue problems in structural dynamic analysis , 1989 .

[18]  Nicholas J. Higham,et al.  Solving a Quadratic Matrix Equation by Newton's Method with Exact Line Searches , 2001, SIAM J. Matrix Anal. Appl..

[19]  B. Datta,et al.  ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .

[20]  Nicholas J. Higham,et al.  Analysis of the Cholesky Method with Iterative Refinement for Solving the Symmetric Definite Generalized Eigenproblem , 2001, SIAM J. Matrix Anal. Appl..

[21]  S. Kay Noise compensation for autoregressive spectral estimates , 1980 .

[22]  Paul Van Dooren,et al.  Stability bounds for higher order linear dynamical systems , 2000 .

[23]  W. Wolovich State-space and multivariable theory , 1972 .

[24]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[25]  Mohsen Ghafory-Ashtiany,et al.  Modal time history analysis of non‐classically damped structures for seismic motions , 1986 .

[26]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[27]  H. Langer,et al.  On some mathematical principles in the linear theory of damped oscillations of continua I , 1978 .

[28]  L. G. Jaeger,et al.  Dynamics of structures , 1990 .

[29]  Leiba Rodman,et al.  Matrices and indefinite scalar products , 1983 .

[30]  H. Langer,et al.  On some mathematical principles in the linear theory of damped oscilations of continua II , 1978 .

[31]  Jack Dongarra,et al.  Numerical Linear Algebra for High-Performance Computers , 1998 .

[32]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..

[33]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[34]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[35]  A. Laub Efficient multivariable frequency response computations , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[36]  Tetsuji Itoh Damped vibration mode superposition method for dynamic response analysis , 1973 .

[37]  Peter Benner,et al.  The Symplectic Eigenvalue Problem, the Butterfly Form, the SR Algorithm, and the Lanczos Method , 1998 .

[38]  Y. Genin,et al.  Stability radii of polynomial matrices , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).

[39]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[40]  P. Mantegazza,et al.  Efficient solution of quadratic eigenproblems arising in dynamic analysis of structures , 1977 .

[41]  Edward L. Wilson,et al.  Ritz method for dynamic analysis of large discrete linear systems with non-proportional damping , 1990 .

[42]  D. Afolabi,et al.  Linearization of the quadratic eigenvalue problem , 1987 .

[43]  Vassilios Theofilis,et al.  Spatial stability of incompressible attachment-line flow , 1995 .

[44]  Weiji Wang,et al.  A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics , 1997 .

[45]  D. Day,et al.  An Efficient Implementation of the Nonsymmetric Lanczos Algorithm , 1997 .

[46]  R. Lehoucq,et al.  Deflation Techniques within an Implicitly Restarted Arnoldi Iteration * , 2003 .

[47]  W. Arnoldi The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .

[48]  Roy R. Craig,et al.  Structural dynamics analysis using an unsymmetric block Lanczos algorithm , 1988 .

[49]  M. A. Brebner,et al.  Eigenvalues of Ax = λBx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process , 1982 .

[50]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[51]  Roland W. Freund,et al.  Reduced-Order Modeling of Large Linear Subcircuits via a Block Lanczos Algorithm , 1995, 32nd Design Automation Conference.

[52]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[53]  G. Stewart Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices , 1976 .

[54]  R. W.,et al.  The Shift-Inverted J-Lanczos Algorithm for the Numerical Solutions of Large Sparse Algebraic Riccati Equations , 2003 .

[55]  Roland W. Freund,et al.  An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..

[56]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[57]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[58]  F. R. Gantmakher The Theory of Matrices , 1984 .

[59]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[60]  Kyle A. Gallivan,et al.  A method for generating rational interpolant reduced order models of two-parameter linear systems , 1999 .

[61]  Roland W. Freund,et al.  QMRPACK: a package of QMR algorithms , 1996, TOMS.

[62]  A. A. Renshaw,et al.  A Stability Criterion for Parameter-Dependent Gyroscopic Systems , 1999 .

[63]  M. SIAMJ.,et al.  NEWTON’S METHOD IN FLOATING POINT ARITHMETIC AND ITERATIVE REFINEMENT OF GENERALIZED EIGENVALUE PROBLEMS∗ , 1999 .

[64]  R. K. Singh,et al.  Formulation and solution of the non‐linear, damped eigenvalue problem for skeletal systems , 1995 .

[65]  Dan S. Henningson,et al.  Pseudospectra of the Orr-Sommerfeld Operator , 1993, SIAM J. Appl. Math..

[66]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[67]  Peter Lancaster,et al.  Gyroscopically Stabilized Systems: A Class Of Quadratic Eigenvalue Problems With Real Spectrum , 1991, Canadian Journal of Mathematics.

[68]  Nicholas J. Higham,et al.  Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..

[69]  V. Simoncini,et al.  Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .

[70]  Ajaya Kumar Gupta,et al.  Response Spectrum Method in Seismic Analysis and Design of Structures , 1990 .

[71]  William J. Stewart,et al.  A Simultaneous Iteration Algorithm for Real Matrices , 1981, TOMS.

[72]  Jaroslav Kautsky,et al.  Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..

[73]  Peter Lancaster,et al.  The Numerical Range of Self-Adjoint Quadratic Matrix Polynomials , 2001, SIAM J. Matrix Anal. Appl..

[74]  V. Kublanovskaya On an Approach to the Solution of the Generalized Latent Value Problem for $\lambda $-Matrices , 1970 .

[75]  Zhishun A. Liu,et al.  A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .

[76]  Christopher C. Paige,et al.  The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .

[77]  A. Neumaier RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .

[78]  Joseph F. Traub,et al.  The Algebraic Theory of Matrix Polynomials , 1976 .

[79]  H. V. D. Vorst,et al.  Quadratic eigenproblems are no problem , 1996 .

[80]  G. Stewart,et al.  Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .

[81]  Lloyd N. Trefethen,et al.  Computation of pseudospectra , 1999, Acta Numerica.

[82]  H. V. D. Vorst,et al.  Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .

[83]  W. Gander,et al.  A Constrained Eigenvalue Problem , 1989 .

[84]  R. Freund Solution of shifted linear systems by quasi-minimal residual iterations , 1993 .

[85]  Ray W. Clough,et al.  Earthquake response analysis considering non‐proportional damping , 1976 .

[86]  D. I. A. Poll,et al.  On the stability of an infinite swept attachment line boundary layer , 1984 .

[87]  Pasadena,et al.  Eigenproblem solution of damped structural systems , 1974 .

[88]  Robert L. Taylor,et al.  SOLUTION OF EIGENPROBLEMS FOR DAMPED STRUCTURAL SYSTEMS BY THE LANCZOS ALGORITHM , 1988 .

[89]  R. Duffin A Minimax Theory for Overdamped Networks , 1955 .

[90]  Nicholas J. Higham,et al.  Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..

[91]  Peter Lancaster,et al.  Lambda-matrices and vibrating systems , 2002 .

[92]  B. Nour-Omid Applications of the Lanczos method , 1989 .

[93]  Andreas Frommer,et al.  Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..

[94]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[95]  Andrew Y. T. Leung,et al.  Inverse iteration for the quadratic eigenvalue problem , 1988 .

[96]  Q. Ye A breakdown-free variation of the nonsymmetric Lanczos algorithms , 1994 .

[97]  R. J. Astley,et al.  A finite element scheme for attenuation in ducts lined with porous material: Comparison with experiment , 1987 .

[98]  S. H. Cheng,et al.  The nearest definite pair for the Hermitian generalized eigenvalue problem , 1999 .

[99]  Peter Benner,et al.  Algorithm 800: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices. I: the square-reduced method , 2000, TOMS.

[100]  N. Higham,et al.  Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems , 2002 .

[101]  R. Quinn,et al.  Equations of motion for maneuvering flexible spacecraft , 1987 .

[102]  Ronald B. Morgan,et al.  On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..

[103]  G. Stewart,et al.  An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .

[104]  David S. Watkins Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..

[105]  Axel Ruhe ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .

[106]  A. R. Ahmadi,et al.  On development of a finite dynamic element and solution of associated eigenproblem by a block Lanczos procedure , 1992 .

[107]  Carlos E. Davila A subspace approach to estimation of autoregressive parameters from noisy measurements , 1998, IEEE Trans. Signal Process..

[108]  Jacques Huitfeldt,et al.  A New Algorithm for Numerical Path Following Applied to an Example from Hydrodynamical Flow , 1990, SIAM J. Sci. Comput..

[109]  R. V. Patel,et al.  A determinant identity and its application in evaluating frequency response matrics , 1988 .

[110]  K. Veselié A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .

[111]  J. Rodrigues,et al.  A subspace iteration method for the eigensolution of large undamped gyroscopic systems , 1989 .

[112]  K. Foss COORDINATES WHICH UNCOUPLE THE EQUATIONS OF MOTION OF DAMPED LINEAR DYNAMIC SYSTEMS , 1956 .

[113]  Frann Coise Tisseur Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .

[114]  Lloyd N. Trefethen,et al.  A spectral Petrov-Galerkin formulation for pipe flow I: Linear stability and transient growth , 2000 .

[115]  P. Lancaster Strongly stable gyroscopic systems , 1999 .

[116]  T. Bridges,et al.  Differential eigenvalue problems in which the parameter appears nonlinearly , 1984 .

[117]  Ivan Slapničar,et al.  Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .

[118]  Françoise Tisseur,et al.  Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .

[119]  Bernardus J. Geurts,et al.  Spatial instabilities of the incompressible attachment-line flow using sparse matrix Jacobi-Davidson techniques , 1997 .

[120]  Ricardo G. Durán,et al.  Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..

[121]  D. Hinrichsen,et al.  Robust stability of linear systems described by higher-order dynamic equations , 1993, IEEE Trans. Autom. Control..

[122]  Peter Benner,et al.  Two connections between the SR and HR eigenvalue algorithms , 1998 .

[123]  P. Benner,et al.  An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .

[124]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[125]  O. Bauchau A solution of the eigenproblem for undamped gyroscopic systems with the Lanczos algorithm , 1986 .

[126]  M. B. Van Gijzen,et al.  The parallel computation of the smallest eigenpair of an acoustic problem with damping , 1999 .

[127]  Y. Saad,et al.  Complex shift and invert strategies for real matrices , 1987 .

[128]  C. Loan A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .

[129]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[130]  A. Bunse-Gerstner An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .

[131]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[132]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[133]  E. Wilson,et al.  Dynamic analysis by direct superposition of Ritz vectors , 1982 .

[134]  Andrew Y. T. Leung Subspace iteration for complex symmetric eigenproblems , 1995 .

[135]  Willis Lin,et al.  Numerical algorithms for undamped gyroscopic systems , 1999 .

[136]  Leiba Rodman,et al.  Numerical Range of Matrix Polynomials , 1994, SIAM J. Matrix Anal. Appl..

[137]  Karl Meerbergen,et al.  Locking and Restarting Quadratic Eigenvalue Solvers , 2000, SIAM J. Sci. Comput..

[138]  Volker Mehrmann,et al.  Where is the nearest non-regular pencil? , 1998 .

[139]  Beresford N. Parlett,et al.  Use of indefinite pencils for computing damped natural modes , 1990 .