The Quadratic Eigenvalue Problem
暂无分享,去创建一个
[1] Ray-Sing Lin,et al. On the stability of attachment-line boundary layers. Part 2. The effect of leading-edge curvature , 1997, Journal of Fluid Mechanics.
[2] Eric James Grimme,et al. Krylov Projection Methods for Model Reduction , 1997 .
[3] Daniel Skoogh. A rational Krylov method for model order reduction , 1998 .
[4] Axel Ruhe,et al. Rational Krylov: A Practical Algorithm for Large Sparse Nonsymmetric Matrix Pencils , 1998, SIAM J. Sci. Comput..
[5] Zhaojun Bai,et al. Error Estimation of the Padé Approximation of Transfer Functions via the Lanczos Process , 1998 .
[6] V. Mehrmann,et al. A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils , 1998 .
[7] N. Higham,et al. Numerical analysis of a quadratic matrix equation , 2000 .
[8] J. Eisenfeld. Quadratic eigenvalue problems , 1968 .
[9] A. Bunse-Gerstner,et al. A symplectic QR like algorithm for the solution of the real algebraic Riccati equation , 1986 .
[10] Raj Mittra,et al. Finite element solution of electromagnetic problems over a wide frequency range via the Padé approximation , 1999 .
[11] J. H. Wilkinson,et al. Inverse Iteration, Ill-Conditioned Equations and Newton’s Method , 1979 .
[12] R. Duffin. The Rayleigh-Ritz method for dissipative or gyroscopic systems , 1960 .
[13] Carmen Chicone,et al. A generalization of the inertia theorem for quadratic matrix polynomials , 1998 .
[14] Allan D. Pierce,et al. Acoustics , 1989 .
[15] Qiang Ye,et al. ABLE: An Adaptive Block Lanczos Method for Non-Hermitian Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[16] Volker Mehrmann,et al. Structure-Preserving Methods for Computing Eigenpairs of Large Sparse Skew-Hamiltonian/Hamiltonian Pencils , 2001, SIAM J. Sci. Comput..
[17] T. Zheng,et al. A generalized inverse iteration method for solution of quadratic eigenvalue problems in structural dynamic analysis , 1989 .
[18] Nicholas J. Higham,et al. Solving a Quadratic Matrix Equation by Newton's Method with Exact Line Searches , 2001, SIAM J. Matrix Anal. Appl..
[19] B. Datta,et al. ORTHOGONALITY AND PARTIAL POLE ASSIGNMENT FOR THE SYMMETRIC DEFINITE QUADRATIC PENCIL , 1997 .
[20] Nicholas J. Higham,et al. Analysis of the Cholesky Method with Iterative Refinement for Solving the Symmetric Definite Generalized Eigenproblem , 2001, SIAM J. Matrix Anal. Appl..
[21] S. Kay. Noise compensation for autoregressive spectral estimates , 1980 .
[22] Paul Van Dooren,et al. Stability bounds for higher order linear dynamical systems , 2000 .
[23] W. Wolovich. State-space and multivariable theory , 1972 .
[24] Gerard L. G. Sleijpen,et al. Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..
[25] Mohsen Ghafory-Ashtiany,et al. Modal time history analysis of non‐classically damped structures for seismic motions , 1986 .
[26] Peter Lancaster,et al. The theory of matrices , 1969 .
[27] H. Langer,et al. On some mathematical principles in the linear theory of damped oscillations of continua I , 1978 .
[28] L. G. Jaeger,et al. Dynamics of structures , 1990 .
[29] Leiba Rodman,et al. Matrices and indefinite scalar products , 1983 .
[30] H. Langer,et al. On some mathematical principles in the linear theory of damped oscilations of continua II , 1978 .
[31] Jack Dongarra,et al. Numerical Linear Algebra for High-Performance Computers , 1998 .
[32] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM Rev..
[33] J. H. Wilkinson. The algebraic eigenvalue problem , 1966 .
[34] B. Moore. Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .
[35] A. Laub. Efficient multivariable frequency response computations , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.
[36] Tetsuji Itoh. Damped vibration mode superposition method for dynamic response analysis , 1973 .
[37] Peter Benner,et al. The Symplectic Eigenvalue Problem, the Butterfly Form, the SR Algorithm, and the Lanczos Method , 1998 .
[38] Y. Genin,et al. Stability radii of polynomial matrices , 1999, Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design (Cat. No.99TH8404).
[39] Chao Yang,et al. ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.
[40] P. Mantegazza,et al. Efficient solution of quadratic eigenproblems arising in dynamic analysis of structures , 1977 .
[41] Edward L. Wilson,et al. Ritz method for dynamic analysis of large discrete linear systems with non-proportional damping , 1990 .
[42] D. Afolabi,et al. Linearization of the quadratic eigenvalue problem , 1987 .
[43] Vassilios Theofilis,et al. Spatial stability of incompressible attachment-line flow , 1995 .
[44] Weiji Wang,et al. A reduction method for large scale unsymmetric eigenvalue problems in structural dynamics , 1997 .
[45] D. Day,et al. An Efficient Implementation of the Nonsymmetric Lanczos Algorithm , 1997 .
[46] R. Lehoucq,et al. Deflation Techniques within an Implicitly Restarted Arnoldi Iteration * , 2003 .
[47] W. Arnoldi. The principle of minimized iterations in the solution of the matrix eigenvalue problem , 1951 .
[48] Roy R. Craig,et al. Structural dynamics analysis using an unsymmetric block Lanczos algorithm , 1988 .
[49] M. A. Brebner,et al. Eigenvalues of Ax = λBx for real symmetric matrices A and B computed by reduction to a pseudosymmetric form and the HR process , 1982 .
[50] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[51] Roland W. Freund,et al. Reduced-Order Modeling of Large Linear Subcircuits via a Block Lanczos Algorithm , 1995, 32nd Design Automation Conference.
[52] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[53] G. Stewart. Simultaneous iteration for computing invariant subspaces of non-Hermitian matrices , 1976 .
[54] R. W.,et al. The Shift-Inverted J-Lanczos Algorithm for the Numerical Solutions of Large Sparse Algebraic Riccati Equations , 2003 .
[55] Roland W. Freund,et al. An Implementation of the Look-Ahead Lanczos Algorithm for Non-Hermitian Matrices , 1993, SIAM J. Sci. Comput..
[56] Jack Dongarra,et al. Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.
[57] K. Glover. All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .
[58] F. R. Gantmakher. The Theory of Matrices , 1984 .
[59] Ed Anderson,et al. LAPACK Users' Guide , 1995 .
[60] Kyle A. Gallivan,et al. A method for generating rational interpolant reduced order models of two-parameter linear systems , 1999 .
[61] Roland W. Freund,et al. QMRPACK: a package of QMR algorithms , 1996, TOMS.
[62] A. A. Renshaw,et al. A Stability Criterion for Parameter-Dependent Gyroscopic Systems , 1999 .
[63] M. SIAMJ.,et al. NEWTON’S METHOD IN FLOATING POINT ARITHMETIC AND ITERATIVE REFINEMENT OF GENERALIZED EIGENVALUE PROBLEMS∗ , 1999 .
[64] R. K. Singh,et al. Formulation and solution of the non‐linear, damped eigenvalue problem for skeletal systems , 1995 .
[65] Dan S. Henningson,et al. Pseudospectra of the Orr-Sommerfeld Operator , 1993, SIAM J. Appl. Math..
[66] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[67] Peter Lancaster,et al. Gyroscopically Stabilized Systems: A Class Of Quadratic Eigenvalue Problems With Real Spectrum , 1991, Canadian Journal of Mathematics.
[68] Nicholas J. Higham,et al. Structured Backward Error and Condition of Generalized Eigenvalue Problems , 1999, SIAM J. Matrix Anal. Appl..
[69] V. Simoncini,et al. Iterative system solvers for the frequency analysis of linear mechanical systems , 2000 .
[70] Ajaya Kumar Gupta,et al. Response Spectrum Method in Seismic Analysis and Design of Structures , 1990 .
[71] William J. Stewart,et al. A Simultaneous Iteration Algorithm for Real Matrices , 1981, TOMS.
[72] Jaroslav Kautsky,et al. Robust Eigenstructure Assignment in Quadratic Matrix Polynomials: Nonsingular Case , 2001, SIAM J. Matrix Anal. Appl..
[73] Peter Lancaster,et al. The Numerical Range of Self-Adjoint Quadratic Matrix Polynomials , 2001, SIAM J. Matrix Anal. Appl..
[74] V. Kublanovskaya. On an Approach to the Solution of the Generalized Latent Value Problem for $\lambda $-Matrices , 1970 .
[75] Zhishun A. Liu,et al. A Look Ahead Lanczos Algorithm for Unsymmetric Matrices , 1985 .
[76] Christopher C. Paige,et al. The computation of eigenvalues and eigenvectors of very large sparse matrices , 1971 .
[77] A. Neumaier. RESIDUAL INVERSE ITERATION FOR THE NONLINEAR EIGENVALUE PROBLEM , 1985 .
[78] Joseph F. Traub,et al. The Algebraic Theory of Matrix Polynomials , 1976 .
[79] H. V. D. Vorst,et al. Quadratic eigenproblems are no problem , 1996 .
[80] G. Stewart,et al. Reorthogonalization and stable algorithms for updating the Gram-Schmidt QR factorization , 1976 .
[81] Lloyd N. Trefethen,et al. Computation of pseudospectra , 1999, Acta Numerica.
[82] H. V. D. Vorst,et al. Jacobi-davidson type methods for generalized eigenproblems and polynomial eigenproblems , 1995 .
[83] W. Gander,et al. A Constrained Eigenvalue Problem , 1989 .
[84] R. Freund. Solution of shifted linear systems by quasi-minimal residual iterations , 1993 .
[85] Ray W. Clough,et al. Earthquake response analysis considering non‐proportional damping , 1976 .
[86] D. I. A. Poll,et al. On the stability of an infinite swept attachment line boundary layer , 1984 .
[87] Pasadena,et al. Eigenproblem solution of damped structural systems , 1974 .
[88] Robert L. Taylor,et al. SOLUTION OF EIGENPROBLEMS FOR DAMPED STRUCTURAL SYSTEMS BY THE LANCZOS ALGORITHM , 1988 .
[89] R. Duffin. A Minimax Theory for Overdamped Networks , 1955 .
[90] Nicholas J. Higham,et al. Structured Pseudospectra for Polynomial Eigenvalue Problems, with Applications , 2001, SIAM J. Matrix Anal. Appl..
[91] Peter Lancaster,et al. Lambda-matrices and vibrating systems , 2002 .
[92] B. Nour-Omid. Applications of the Lanczos method , 1989 .
[93] Andreas Frommer,et al. Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..
[94] I. Duff,et al. Direct Methods for Sparse Matrices , 1987 .
[95] Andrew Y. T. Leung,et al. Inverse iteration for the quadratic eigenvalue problem , 1988 .
[96] Q. Ye. A breakdown-free variation of the nonsymmetric Lanczos algorithms , 1994 .
[97] R. J. Astley,et al. A finite element scheme for attenuation in ducts lined with porous material: Comparison with experiment , 1987 .
[98] S. H. Cheng,et al. The nearest definite pair for the Hermitian generalized eigenvalue problem , 1999 .
[99] Peter Benner,et al. Algorithm 800: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices. I: the square-reduced method , 2000, TOMS.
[100] N. Higham,et al. Detecting a definite Hermitian pair and a hyperbolic or elliptic quadratic eigenvalue problem, and associated nearness problems , 2002 .
[101] R. Quinn,et al. Equations of motion for maneuvering flexible spacecraft , 1987 .
[102] Ronald B. Morgan,et al. On restarting the Arnoldi method for large nonsymmetric eigenvalue problems , 1996, Math. Comput..
[103] G. Stewart,et al. An Algorithm for Generalized Matrix Eigenvalue Problems. , 1973 .
[104] David S. Watkins. Performance of the QZ Algorithm in the Presence of Infinite Eigenvalues , 2000, SIAM J. Matrix Anal. Appl..
[105] Axel Ruhe. ALGORITHMS FOR THE NONLINEAR EIGENVALUE PROBLEM , 1973 .
[106] A. R. Ahmadi,et al. On development of a finite dynamic element and solution of associated eigenproblem by a block Lanczos procedure , 1992 .
[107] Carlos E. Davila. A subspace approach to estimation of autoregressive parameters from noisy measurements , 1998, IEEE Trans. Signal Process..
[108] Jacques Huitfeldt,et al. A New Algorithm for Numerical Path Following Applied to an Example from Hydrodynamical Flow , 1990, SIAM J. Sci. Comput..
[109] R. V. Patel,et al. A determinant identity and its application in evaluating frequency response matrics , 1988 .
[110] K. Veselié. A Jacobi eigenreduction algorithm for definite matrix pairs , 1993 .
[111] J. Rodrigues,et al. A subspace iteration method for the eigensolution of large undamped gyroscopic systems , 1989 .
[112] K. Foss. COORDINATES WHICH UNCOUPLE THE EQUATIONS OF MOTION OF DAMPED LINEAR DYNAMIC SYSTEMS , 1956 .
[113] Frann Coise Tisseur. Backward Error and Condition of Polynomial Eigenvalue Problems , 1999 .
[114] Lloyd N. Trefethen,et al. A spectral Petrov-Galerkin formulation for pipe flow I: Linear stability and transient growth , 2000 .
[115] P. Lancaster. Strongly stable gyroscopic systems , 1999 .
[116] T. Bridges,et al. Differential eigenvalue problems in which the parameter appears nonlinearly , 1984 .
[117] Ivan Slapničar,et al. Accurate Symmetric Eigenreduction by a Jacobi Method , 1993 .
[118] Françoise Tisseur,et al. Perturbation theory for homogeneous polynomial eigenvalue problems , 2003 .
[119] Bernardus J. Geurts,et al. Spatial instabilities of the incompressible attachment-line flow using sparse matrix Jacobi-Davidson techniques , 1997 .
[120] Ricardo G. Durán,et al. Finite Element Analysis of a Quadratic Eigenvalue Problem Arising in Dissipative Acoustics , 2000, SIAM J. Numer. Anal..
[121] D. Hinrichsen,et al. Robust stability of linear systems described by higher-order dynamic equations , 1993, IEEE Trans. Autom. Control..
[122] Peter Benner,et al. Two connections between the SR and HR eigenvalue algorithms , 1998 .
[123] P. Benner,et al. An Implicitly Restarted Symplectic Lanczos Method for the Hamiltonian Eigenvalue Problem , 1997 .
[124] Danny C. Sorensen,et al. Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..
[125] O. Bauchau. A solution of the eigenproblem for undamped gyroscopic systems with the Lanczos algorithm , 1986 .
[126] M. B. Van Gijzen,et al. The parallel computation of the smallest eigenpair of an acoustic problem with damping , 1999 .
[127] Y. Saad,et al. Complex shift and invert strategies for real matrices , 1987 .
[128] C. Loan. A Symplectic Method for Approximating All the Eigenvalues of a Hamiltonian Matrix , 1982 .
[129] Gerard L. G. Sleijpen,et al. A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..
[130] A. Bunse-Gerstner. An analysis of the HR algorithm for computing the eigenvalues of a matrix , 1981 .
[131] Danny C. Sorensen,et al. Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..
[132] Richard Barrett,et al. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.
[133] E. Wilson,et al. Dynamic analysis by direct superposition of Ritz vectors , 1982 .
[134] Andrew Y. T. Leung. Subspace iteration for complex symmetric eigenproblems , 1995 .
[135] Willis Lin,et al. Numerical algorithms for undamped gyroscopic systems , 1999 .
[136] Leiba Rodman,et al. Numerical Range of Matrix Polynomials , 1994, SIAM J. Matrix Anal. Appl..
[137] Karl Meerbergen,et al. Locking and Restarting Quadratic Eigenvalue Solvers , 2000, SIAM J. Sci. Comput..
[138] Volker Mehrmann,et al. Where is the nearest non-regular pencil? , 1998 .
[139] Beresford N. Parlett,et al. Use of indefinite pencils for computing damped natural modes , 1990 .