Cubic graphs

This paper is concerned with the subclass of graphs called cubic graphs. We survey these graphs and their history. Several classical graph theory results concerning cubic graphs are explained. Graph theory problems whose solutions on cubic graphs are particularly important or interesting are presented from both the sequential and parallel point of view. A new algorithm is presented for the maximal matching problem restricted to cubic graphs. Many miscellaneous facts about cubic graphs are also described. An extensive list of references is provided.

[1]  Gary L. Miller,et al.  Graph isomorphism, general remarks , 1977, STOC '77.

[2]  R. Tarjan Amortized Computational Complexity , 1985 .

[3]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[4]  L. Dickson Linear Groups, with an Exposition of the Galois Field Theory , 1958 .

[5]  Tait IV. Listingś topologie , 1884 .

[6]  David S. Johnson,et al.  Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..

[7]  Rossella Petreschi,et al.  At most single-bend embeddings of cubic graphs , 1994 .

[8]  Martin Loebl,et al.  Efficient Maximal Cubic Graph Cuts (Extended Abstract) , 1991, ICALP.

[9]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[10]  Mihalis Yannakakis,et al.  Node-and edge-deletion NP-complete problems , 1978, STOC.

[11]  Robert E. Tarjan,et al.  Computing an st -Numbering , 1976, Theor. Comput. Sci..

[12]  Gary Lynn Peterson The complexity of parallel algorithms , 1979 .

[13]  W. Burnside,et al.  Theory of Groups of Finite Order , 1909 .

[14]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[15]  Richard M. Karp,et al.  Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[16]  Raymond Greenlaw,et al.  Breadth-Depth Search is P-Complete , 1993, Parallel Process. Lett..

[17]  W. T. Tutte NON-HAMILTONIAN PLANAR MAPS , 1972 .

[18]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[19]  Kurt Mehlhorn,et al.  Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .

[20]  Gary L. Miller,et al.  Regular groups of automorphisms of cubic graphs , 1980, J. Comb. Theory, Ser. B.

[21]  Richard Weiss,et al.  The nonexistence of 8-transitive graphs , 1981, Comb..

[22]  W. T. Tutte A non-Hamiltonian planar graph , 1960 .

[23]  W. Sierpinski,et al.  Sur le probléme des courbes gauches en Topologie , 2022 .

[24]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[25]  Claude Berge,et al.  ALTERNATING CHAIN METHODS: A SURVEY , 1972 .

[26]  H. Sachs,et al.  Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .

[27]  H. James Hoover,et al.  Limits to Parallel Computation: P-Completeness Theory , 1995 .

[28]  C. Praeger An O'Nan‐Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2‐Arc Transitive Graphs , 1993 .

[29]  Mihalis Yannakakis,et al.  Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..

[30]  J. Köbler,et al.  The Graph Isomorphism Problem: Its Structural Complexity , 1993 .

[31]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[32]  Rossella Petreschi,et al.  Theoretical results on at most 1-bend embeddability of graphs , 1992 .

[33]  Martin Tompa,et al.  Lower Bounds on Universal Traversal Sequences Based on Chains of Length Five , 1995, Inf. Comput..

[34]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[35]  Alan M. Frieze,et al.  Analysis of a simple greedy matching algorithm on random cubic graphs , 1995, SODA '93.

[36]  Jan van Leeuwen,et al.  Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .

[37]  J. Petersen Die Theorie der regulären graphs , 1891 .

[38]  Thomas J. Schaefer,et al.  The complexity of satisfiability problems , 1978, STOC.

[39]  H. Sachs Regular Graphs with Given Girth and Restricted Circuits , 1963 .

[40]  W. T. Tutte On Hamiltonian Circuits , 1946 .

[41]  Francesco Kàrteszi Piani finiti ciclici come risoluzioni di un certo problema di minimo. , 1960 .

[42]  Amos Israeli,et al.  An Improved Parallel Algorithm for Maximal Matching , 1986, Inf. Process. Lett..

[43]  Frank Harary,et al.  Regular graphs with given girth pair , 1983, J. Graph Theory.

[44]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[45]  Martin Tompa Lower Bounds on Universal Traversal Sequences for Cycles and Other Low Degree Graphs , 1992, SIAM J. Comput..

[46]  J. Dixon,et al.  Permutation Groups , 1996 .

[47]  Satoru Miyano,et al.  The Lexicographically First Maximal Subgraph Problems: P-Completeness and NC Algorithms , 1987, International Colloquium on Automata, Languages and Programming.

[48]  John H. Reif,et al.  Depth-First Search is Inherently Sequential , 1985, Inf. Process. Lett..

[49]  Franco P. Preparata,et al.  The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[50]  Cheryl E. Praeger,et al.  On a reduction theorem for finite, bipartite 2-arc-transitive graphs , 1993, Australas. J Comb..

[51]  Richard J. Lipton,et al.  Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).

[52]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[53]  David S. Johnson,et al.  Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .

[54]  W. F. McGee A Minimal Cubic Graph of Girth Seven , 1960, Canadian Mathematical Bulletin.

[55]  Peter Lorimer,et al.  Vertex-transitive graphs: Symmetric graphs of prime valency , 1984, J. Graph Theory.

[56]  O. Ore The Four-Color Problem , 1967 .

[57]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[58]  David S. Johnson,et al.  The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..

[59]  W. T. Tutte On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.

[60]  Reuven Bar-Yehuda,et al.  A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem , 1983, WG.

[61]  Ewald Speckenmeyer,et al.  Some Further Approximation Algorithms for the Vertex Cover Problem , 1983, CAAP.

[62]  Jacobo Torán,et al.  The graph isomorphism problem , 2020, Commun. ACM.

[63]  W. T. Tutte A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[64]  Ronald C. Read,et al.  Graph theory and computing , 1972 .

[65]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[66]  Frank Harary,et al.  EVOLUTION OF THE PATH NUMBER OF A GRAPH: COVERING AND PACKING IN GRAPHS, II††This research was supported in part by a grant to the Research Center for Group Dynamics of the University of Michigan from the NIH Biomedical Sciences Division. , 1972 .

[67]  Witold Lipski Two NP-Complete Problems Related to Information Retrieval , 1977, FCT.

[68]  Ellis L Johnson A PROOF OF FOUR-COLORING THE EDGES OF A REGULAR THREE-DEGREE GRAPH , 1963 .

[69]  Robert R. Korfhage Discrete computational structures , 1974 .

[70]  Mihalis Yannakakis,et al.  Edge Dominating Sets in Graphs , 1980 .

[71]  Richard J. Anderson,et al.  Parallelism and the Maximal Path Problem , 1987, Inf. Process. Lett..

[72]  G. A. DIRAC,et al.  The Colouring of Maps , 1952, Nature.

[73]  R. Ladner The circuit value problem is log space complete for P , 1975, SIGA.

[74]  David S. Johnson,et al.  COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .