Cubic graphs
暂无分享,去创建一个
[1] Gary L. Miller,et al. Graph isomorphism, general remarks , 1977, STOC '77.
[2] R. Tarjan. Amortized Computational Complexity , 1985 .
[3] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[4] L. Dickson. Linear Groups, with an Exposition of the Galois Field Theory , 1958 .
[5] Tait. IV. Listingś topologie , 1884 .
[6] David S. Johnson,et al. Some Simplified NP-Complete Graph Problems , 1976, Theor. Comput. Sci..
[7] Rossella Petreschi,et al. At most single-bend embeddings of cubic graphs , 1994 .
[8] Martin Loebl,et al. Efficient Maximal Cubic Graph Cuts (Extended Abstract) , 1991, ICALP.
[9] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[10] Mihalis Yannakakis,et al. Node-and edge-deletion NP-complete problems , 1978, STOC.
[11] Robert E. Tarjan,et al. Computing an st -Numbering , 1976, Theor. Comput. Sci..
[12] Gary Lynn Peterson. The complexity of parallel algorithms , 1979 .
[13] W. Burnside,et al. Theory of Groups of Finite Order , 1909 .
[14] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[15] Richard M. Karp,et al. Parallel Algorithms for Shared-Memory Machines , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[16] Raymond Greenlaw,et al. Breadth-Depth Search is P-Complete , 1993, Parallel Process. Lett..
[17] W. T. Tutte. NON-HAMILTONIAN PLANAR MAPS , 1972 .
[18] F. Leighton,et al. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .
[19] Kurt Mehlhorn,et al. Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity , 1990 .
[20] Gary L. Miller,et al. Regular groups of automorphisms of cubic graphs , 1980, J. Comb. Theory, Ser. B.
[21] Richard Weiss,et al. The nonexistence of 8-transitive graphs , 1981, Comb..
[22] W. T. Tutte. A non-Hamiltonian planar graph , 1960 .
[23] W. Sierpinski,et al. Sur le probléme des courbes gauches en Topologie , 2022 .
[24] R. L. Brooks. On Colouring the Nodes of a Network , 1941 .
[25] Claude Berge,et al. ALTERNATING CHAIN METHODS: A SURVEY , 1972 .
[26] H. Sachs,et al. Regukre Graphen gegebener Taillenweite mit minimaler Knotenzahl , 1963 .
[27] H. James Hoover,et al. Limits to Parallel Computation: P-Completeness Theory , 1995 .
[28] C. Praeger. An O'Nan‐Scott Theorem for Finite Quasiprimitive Permutation Groups and an Application to 2‐Arc Transitive Graphs , 1993 .
[29] Mihalis Yannakakis,et al. Simple Local Search Problems That are Hard to Solve , 1991, SIAM J. Comput..
[30] J. Köbler,et al. The Graph Isomorphism Problem: Its Structural Complexity , 1993 .
[31] David S. Johnson,et al. The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.
[32] Rossella Petreschi,et al. Theoretical results on at most 1-bend embeddability of graphs , 1992 .
[33] Martin Tompa,et al. Lower Bounds on Universal Traversal Sequences Based on Chains of Length Five , 1995, Inf. Comput..
[34] Claude Berge,et al. Graphs and Hypergraphs , 2021, Clustering.
[35] Alan M. Frieze,et al. Analysis of a simple greedy matching algorithm on random cubic graphs , 1995, SODA '93.
[36] Jan van Leeuwen,et al. Handbook of Theoretical Computer Science, Vol. A: Algorithms and Complexity , 1994 .
[37] J. Petersen. Die Theorie der regulären graphs , 1891 .
[38] Thomas J. Schaefer,et al. The complexity of satisfiability problems , 1978, STOC.
[39] H. Sachs. Regular Graphs with Given Girth and Restricted Circuits , 1963 .
[40] W. T. Tutte. On Hamiltonian Circuits , 1946 .
[41] Francesco Kàrteszi. Piani finiti ciclici come risoluzioni di un certo problema di minimo. , 1960 .
[42] Amos Israeli,et al. An Improved Parallel Algorithm for Maximal Matching , 1986, Inf. Process. Lett..
[43] Frank Harary,et al. Regular graphs with given girth pair , 1983, J. Graph Theory.
[44] David S. Johnson,et al. The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.
[45] Martin Tompa. Lower Bounds on Universal Traversal Sequences for Cycles and Other Low Degree Graphs , 1992, SIAM J. Comput..
[46] J. Dixon,et al. Permutation Groups , 1996 .
[47] Satoru Miyano,et al. The Lexicographically First Maximal Subgraph Problems: P-Completeness and NC Algorithms , 1987, International Colloquium on Automata, Languages and Programming.
[48] John H. Reif,et al. Depth-First Search is Inherently Sequential , 1985, Inf. Process. Lett..
[49] Franco P. Preparata,et al. The cube-connected-cycles: A versatile network for parallel computation , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[50] Cheryl E. Praeger,et al. On a reduction theorem for finite, bipartite 2-arc-transitive graphs , 1993, Australas. J Comb..
[51] Richard J. Lipton,et al. Random walks, universal traversal sequences, and the complexity of maze problems , 1979, 20th Annual Symposium on Foundations of Computer Science (sfcs 1979).
[52] Greg N. Frederickson,et al. Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..
[53] David S. Johnson,et al. Computers and In stractability: A Guide to the Theory of NP-Completeness. W. H Freeman, San Fran , 1979 .
[54] W. F. McGee. A Minimal Cubic Graph of Girth Seven , 1960, Canadian Mathematical Bulletin.
[55] Peter Lorimer,et al. Vertex-transitive graphs: Symmetric graphs of prime valency , 1984, J. Graph Theory.
[56] O. Ore. The Four-Color Problem , 1967 .
[57] Mihalis Yannakakis,et al. Edge-Deletion Problems , 1981, SIAM J. Comput..
[58] David S. Johnson,et al. The Planar Hamiltonian Circuit Problem is NP-Complete , 1976, SIAM J. Comput..
[59] W. T. Tutte. On the Symmetry of Cubic Graphs , 1959, Canadian Journal of Mathematics.
[60] Reuven Bar-Yehuda,et al. A Local-Ratio Theorem for Approximating the Weighted Vertex Cover Problem , 1983, WG.
[61] Ewald Speckenmeyer,et al. Some Further Approximation Algorithms for the Vertex Cover Problem , 1983, CAAP.
[62] Jacobo Torán,et al. The graph isomorphism problem , 2020, Commun. ACM.
[63] W. T. Tutte. A family of cubical graphs , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.
[64] Ronald C. Read,et al. Graph theory and computing , 1972 .
[65] David S. Johnson,et al. The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.
[66] Frank Harary,et al. EVOLUTION OF THE PATH NUMBER OF A GRAPH: COVERING AND PACKING IN GRAPHS, II††This research was supported in part by a grant to the Research Center for Group Dynamics of the University of Michigan from the NIH Biomedical Sciences Division. , 1972 .
[67] Witold Lipski. Two NP-Complete Problems Related to Information Retrieval , 1977, FCT.
[68] Ellis L Johnson. A PROOF OF FOUR-COLORING THE EDGES OF A REGULAR THREE-DEGREE GRAPH , 1963 .
[69] Robert R. Korfhage. Discrete computational structures , 1974 .
[70] Mihalis Yannakakis,et al. Edge Dominating Sets in Graphs , 1980 .
[71] Richard J. Anderson,et al. Parallelism and the Maximal Path Problem , 1987, Inf. Process. Lett..
[72] G. A. DIRAC,et al. The Colouring of Maps , 1952, Nature.
[73] R. Ladner. The circuit value problem is log space complete for P , 1975, SIGA.
[74] David S. Johnson,et al. COMPLEXITY RESULTS FOR BANDWIDTH MINIMIZATION , 1978 .