Polyhedral Assembly Partitioning Using Maximally Covered Cells in Arrangements of Convex Polytopes
暂无分享,去创建一个
Leonidas J. Guibas | Jean-Claude Latombe | Randall H. Wilson | Hirohisa Hirukawa | Dan Halperin | J. Latombe | D. Halperin | L. Guibas | H. Hirukawa | R. Wilson
[1] L. Tóth,et al. Über stabile Körpersysteme , 1964 .
[2] Bernard Roth,et al. An Extension of Screw Theory , 1981 .
[3] Nimrod Megiddo,et al. Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.
[4] Balas K. Natarajan,et al. On planning assemblies , 1988, SCG '88.
[5] Arthur C. Sanderson,et al. A correct and complete algorithm for the generation of mechanical assembly sequences , 1991, IEEE Trans. Robotics Autom..
[6] Pradeep K. Khosla,et al. Motion constraints from contact geometry: representation and analysis , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.
[7] Randall H. Wilson,et al. Partitioning An Assembly For Infinitesimal Motions In Translation And Rotation , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.
[8] Micha Sharir,et al. On the Zone Theorem for Hyperplane Arrangements , 1991, SIAM J. Comput..
[9] H. Hirukawa,et al. Automatic determination of possible velocity and applicable force of frictionless objects in contact from a geometric model , 1994, IEEE Trans. Robotics Autom..
[10] Jean-Claude Latombe,et al. Geometric Reasoning About Mechanical Assembly , 1994, Artif. Intell..
[11] Jorge Stolfi,et al. Objects that cannot be taken apart with two hands , 1994, Discret. Comput. Geom..
[12] Micha Sharir,et al. Almost tight upper bounds for the single cell and zone problems in three dimensions , 1995, Discret. Comput. Geom..