Generación de trayectorias y toma de decisiones para UAVs

The trajectory generation and its replanning in hostile environments for UAVs (Unmanned Aerial Vehicles) is a discipline in expansion. The hostile environments contains threats, modelled here as radars. Initially a route is planned. Then, if during the fly arise pop-up threats, a replanning is carried out. In both cases the routes are obtained via the A* algorithm. When replanning, the UAV makes a decision about whether to continue the initial plan or to follow the replanned route. The multiattribute decision making theory is a suitable strategy.

[1]  Talib S. Hussain,et al.  Evolution-Based Deliberative Planning for Cooperating Unmanned Ground Vehicles in a Dynamic Environment , 2004, GECCO.

[2]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[3]  Gaurav S. Sukhatme,et al.  Avoiding detection in a dynamic environment , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[4]  Anibal Ollero,et al.  Planificación de Trayectorias con el Algoritmo RRT. Aplicación a Robots No Holónomos , 2006 .

[5]  Raffaello D'Andrea,et al.  Path Planning for Unmanned Aerial Vehicles in Uncertain and Adversarial Environments , 2003 .

[6]  Ugur Zengin,et al.  Probabilistic trajectory planning for UAVs in dynamic environments , 2004 .

[7]  Alfonso Mateos Caballero,et al.  Fundamentos de los sistemas de ayuda a la decisión , 2002 .

[8]  Sunil K. Agrawal,et al.  A practical framework for formation planning and control of multiple unmanned ground vehicles , 2004 .

[9]  Gonzalo Pajares,et al.  Using MILP for UAVs Trajectory Optimization under Radar Detection Risk , 2006, 2006 IEEE Conference on Emerging Technologies and Factory Automation.

[10]  J.P. Hespanha,et al.  Probabilistic map building for aircraft-tracking radars , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[11]  Kevin M. Passino,et al.  Biomimicry for Optimization, Control and Automation , 2004, IEEE Transactions on Automatic Control.

[12]  Adam McLendon Eames Enabling path planning and threat avoidance with wireless sensor networks , 2005 .

[13]  Thierry Fraichard,et al.  Trajectory planning in a dynamic workspace: a 'state-time space' approach , 1998, Adv. Robotics.

[14]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[15]  Gonzalo Pajares,et al.  Decision making among alternative routes for UAVs in dynamic environments , 2007, 2007 IEEE Conference on Emerging Technologies and Factory Automation (EFTA 2007).

[16]  P. Pardalos,et al.  Optimal Risk Path Algorithms , 2002 .

[17]  S. Uryasev,et al.  Aircraft routing under the risk of detection , 2006 .

[18]  Semyon M. Meerkov,et al.  Optimal Path Planning for Unmanned Combat Aerial Vehicles to Defeat Radar Tracking , 2006 .

[19]  Atilla Dogan Probabilistic approach in path planning for UAVs , 2003, Proceedings of the 2003 IEEE International Symposium on Intelligent Control.

[20]  Ralph Schäfer Rules for Using Multi-Attribute Utility Theory for Estimating a User’s Interests , 2001 .