Visibility-based pursuit-evasion: the case of curved environments

We consider the problem of visually searching for an unpredictable target that can move arbitrarily fast in a simply-connected, curved, two-dimensional environment. A complete algorithm is presented that is guaranteed to find the elusive target if it is possible for a single pursuer. The key to the algorithm is a cell decomposition based on critical visibility events that occur because of inflections and bitangents of the environment boundary. We have implemented the cell decomposition algorithm, and show several computed examples. The technique is an extension and simplification of a previous technique for searching a polygonal environment. Our solution can also be considered as a step towards a unified approach to pursuit-evasion strategies that have little dependency on the representation of the environment.

[1]  Masafumi Yamashita,et al.  Searching for Mobile Intruders in a Polygonal Region by a Group of Mobile Searchers , 2001, SCG '97.

[2]  Giora Slutzki,et al.  An algorithm for searching a polygonal region with a flashlight , 2000, SCG '00.

[3]  Giora Slutzki,et al.  Pursuit-evasion using beam detection , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[4]  Sung Yong Shin,et al.  Visibility-based pursuit-evasion in a polygonal room with a door , 1999, SCG '99.

[5]  Ehud Rivlin,et al.  Range-sensor based navigation in three dimensions , 1999, Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).

[6]  Xiaotie Deng,et al.  How to learn an unknown environment. I: the rectilinear case , 1998, JACM.

[7]  Leonidas J. Guibas,et al.  Finding an unpredictable target in a workspace with obstacles , 1997, Proceedings of International Conference on Robotics and Automation.

[8]  Jake K. Aggarwal,et al.  Mobile robot self-location using model-image feature correspondence , 1996, IEEE Trans. Robotics Autom..

[9]  Steven M. LaValle,et al.  A game-theoretic framework for robot motion planning , 1996 .

[10]  Masafumi Yamashita,et al.  Searching for a mobile intruder in a corridor: the open edge variant of the polygon search problem , 1995, Int. J. Comput. Geom. Appl..

[11]  I. Kamon,et al.  Sensory based motion planning with global proofs , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[12]  Jérôme Barraquand,et al.  Motion planning with uncertainty: the information space approach , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[13]  J. Burdick,et al.  Sensor based planning. I. The generalized Voronoi graph , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[14]  Leonidas J. Guibas,et al.  The Robot Localization Problem , 1995, SIAM J. Comput..

[15]  Vladimir J. Lumelsky,et al.  An algorithm for maze searching with azimuth input , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[16]  Vladimir J. Lumelsky,et al.  Provable strategies for vision-guided exploration in three dimensions , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[17]  Michel Pocchiola,et al.  The visibility complex , 1993, SCG '93.

[18]  Andrea S. LaPaugh,et al.  Recontamination does not help to search a graph , 1993, JACM.

[19]  Masafumi Yamashita,et al.  Searching for a Mobile Intruder in a Polygonal Region , 1992, SIAM J. Comput..

[20]  T. C. Shermer,et al.  Recent results in art galleries (geometry) , 1992, Proc. IEEE.

[21]  Paul D. Seymour,et al.  Monotonicity in Graph Searching , 1991, J. Algorithms.

[22]  Simeon C. Ntafos,et al.  Optimum watchman routes , 1986, SCG '86.

[23]  Ivan Hal Sudborough,et al.  Min Cut is NP-Complete for Edge Weigthed Trees , 1986, ICALP.

[24]  Fillia Makedon,et al.  Minimizing Width in Linear Layouts , 1983, ICALP.

[25]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[26]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[27]  P. Varaiya,et al.  Differential Games , 1994 .

[28]  T. Shermer Recent Results in Art Galleries , 1992 .

[29]  Lyle A. McGeoch,et al.  Competitive algorithms for on-line problems , 1988, STOC '88.

[30]  J. O'Rourke Art gallery theorems and algorithms , 1987 .

[31]  T. Başar,et al.  Dynamic Noncooperative Game Theory , 1982 .

[32]  Christos H. Papadimitriou,et al.  The complexity of searching a graph , 1981, 22nd Annual Symposium on Foundations of Computer Science (sfcs 1981).

[33]  T. D. Parsons,et al.  Pursuit-evasion in a graph , 1978 .

[34]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.