Stability of multiobjective predictive control: A utopia-tracking approach

We propose a utopia-tracking strategy to handle multiple conflicting objectives in model predictive control. The controller minimizes the distance of its vector of objectives to that of the compromise solution: the point along the steady-state Pareto front closest to the utopia point, where all the objectives are independently minimized. We establish conditions for asymptotic stability and propose numerical implementation variants. One of the key advantages of the approach is that it avoids the computation of Pareto fronts in real-time environments. In addition, the approach can handle general objectives of different nature such as economic and regularization.

[1]  Ignacio E. Grossmann,et al.  Systematic Methods of Chemical Process Design , 1997 .

[2]  J. Maciejowski,et al.  Designing model predictive controllers with prioritised constraints and objectives , 2002, Proceedings. IEEE International Symposium on Computer Aided Control System Design.

[3]  Ilya V. Kolmanovsky,et al.  Predictive energy management of a power-split hybrid electric vehicle , 2009, 2009 American Control Conference.

[4]  Darine Zambrano,et al.  Application of MPC with multiple objective for a solar refrigeration plant , 2002, Proceedings of the International Conference on Control Applications.

[5]  Moritz Diehl,et al.  A Lyapunov Function for Economic Optimizing Model Predictive Control , 2011, IEEE Transactions on Automatic Control.

[6]  Richard C. Larson,et al.  Model Building in Mathematical Programming , 1979 .

[7]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[8]  A. Gambier,et al.  MPC and PID control based on Multi-Objective Optimization , 2008, 2008 American Control Conference.

[9]  Antonio Flores-Tlacuahuac,et al.  Multiobjective Nonlinear Model Predictive Control of a Class of Chemical Reactors , 2012 .

[10]  E. Gilbert,et al.  Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: Stability and moving-horizon approximations , 1988 .

[11]  Ronald K. Pearson,et al.  Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models , 1996, Autom..

[12]  Ignacio E. Grossmann,et al.  INCORPORATING TOXICOLOGY IN THE SYNTHESIS OF INDUSTRIAL CHEMICAL COMPLEXES , 1982 .

[13]  Riccardo Scattolini,et al.  A receding horizon approach to the multiobjective control problem , 2007, 2007 46th IEEE Conference on Decision and Control.

[14]  Victor M. Zavala,et al.  Stability analysis of an approximate scheme for moving horizon estimation , 2010, Comput. Chem. Eng..

[15]  Sten Bay Jørgensen,et al.  Unreachable Setpoints in Model Predictive Control , 2008, IEEE Transactions on Automatic Control.

[16]  Alberto Bemporad,et al.  Multiobjective model predictive control , 2009, Autom..

[17]  G. Stephanopoulos,et al.  Multiobjective dynamic optimization of semibatch copolymerization reactors , 1982 .

[18]  Riccardo Scattolini,et al.  Robustness and robust design of MPC for nonlinear systems , 2007 .

[19]  Lorenz T. Biegler,et al.  Lyapunov stability of economically oriented NMPC for cyclic processes , 2011 .

[20]  Mara Tanelli,et al.  Switched model predictive control for performance enhancement , 2008, Int. J. Control.

[21]  Antonio Ferramosca,et al.  Economic MPC for a changing economic criterion , 2010, 49th IEEE Conference on Decision and Control (CDC).

[22]  Emilio Frazzoli,et al.  On the Dubins Traveling Salesman Problem , 2012, IEEE Transactions on Automatic Control.

[23]  James B. Rawlings,et al.  Linear programming and model predictive control , 2000 .

[24]  Panos M. Pardalos,et al.  A survey of recent developments in multiobjective optimization , 2007, Ann. Oper. Res..

[25]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..