Machine learning classifiers and fMRI: A tutorial overview

Interpreting brain image experiments requires analysis of complex, multivariate data. In recent years, one analysis approach that has grown in popularity is the use of machine learning algorithms to train classifiers to decode stimuli, mental states, behaviours and other variables of interest from fMRI data and thereby show the data contain information about them. In this tutorial overview we review some of the key choices faced in using this approach as well as how to derive statistically significant results, illustrating each point from a case study. Furthermore, we show how, in addition to answering the question of 'is there information about a variable of interest' (pattern discrimination), classifiers can be used to tackle other classes of question, namely 'where is the information' (pattern localization) and 'how is that information encoded' (pattern characterization).

[1]  J. Langford Tutorial on Practical Prediction Theory for Classification , 2005, J. Mach. Learn. Res..

[2]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[3]  Larry Wasserman,et al.  All of Statistics , 2004 .

[4]  G. Rees,et al.  Predicting the Stream of Consciousness from Activity in Human Visual Cortex , 2005, Current Biology.

[5]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[6]  Vaidehi S. Natu,et al.  Category-Specific Cortical Activity Precedes Retrieval During Memory Search , 2005, Science.

[7]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[8]  Tom M. Mitchell,et al.  Beyond brain blobs: machine learning classifiers as instruments for analyzing functional magnetic resonance imaging data , 2007 .

[9]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[10]  Tom Michael Mitchell,et al.  Predicting Human Brain Activity Associated with the Meanings of Nouns , 2008, Science.

[11]  Alice J. O'Toole,et al.  Theoretical, Statistical, and Practical Perspectives on Pattern-based Classification Approaches to the Analysis of Functional Neuroimaging Data , 2007, Journal of Cognitive Neuroscience.

[12]  Geoffrey J. Gordon,et al.  The support vector decomposition machine , 2006, ICML.

[13]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[14]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[15]  L. K. Hansen,et al.  The Quantitative Evaluation of Functional Neuroimaging Experiments: The NPAIRS Data Analysis Framework , 2000, NeuroImage.

[16]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[17]  Thorsten Joachims,et al.  Making large scale SVM learning practical , 1998 .

[18]  Yaroslav O. Halchenko,et al.  Brain Reading Using Full Brain Support Vector Machines for Object Recognition: There Is No Face Identification Area , 2008, Neural Computation.

[19]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[20]  Vince D. Calhoun,et al.  ICA of functional MRI data: an overview. , 2003 .

[21]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[22]  Alice J. O'Toole,et al.  Partially Distributed Representations of Objects and Faces in Ventral Temporal Cortex , 2005, Journal of Cognitive Neuroscience.

[23]  Indrayana Rustandi,et al.  Hidden process models , 2006, ICML.

[24]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[25]  Bernhard Schölkopf,et al.  Comparing support vector machines with Gaussian kernels to radial basis function classifiers , 1997, IEEE Trans. Signal Process..

[26]  Stephen José Hanson,et al.  Combinatorial codes in ventral temporal lobe for object recognition: Haxby (2001) revisited: is there a “face” area? , 2004, NeuroImage.

[27]  Karl J. Friston,et al.  CHAPTER 2 – Statistical parametric mapping , 2007 .

[28]  G. Rees Statistical Parametric Mapping , 2004, Practical Neurology.

[29]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[30]  Polina Golland,et al.  Permutation Tests for Classification: Towards Statistical Significance in Image-Based Studies , 2003, IPMI.

[31]  Rainer Goebel,et al.  Information-based functional brain mapping. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Isabelle Guyon,et al.  An Introduction to Variable and Feature Selection , 2003, J. Mach. Learn. Res..

[33]  L. Brown,et al.  Interval Estimation for a Binomial Proportion , 2001 .

[34]  Karl J. Friston,et al.  Dynamic discrimination analysis: A spatial–temporal SVM , 2007, NeuroImage.

[35]  Tom M. Mitchell,et al.  Learning to Decode Cognitive States from Brain Images , 2004, Machine Learning.

[36]  L. K. Hansen,et al.  Generalizable Patterns in Neuroimaging: How Many Principal Components? , 1999, NeuroImage.

[37]  Geoffrey Karl Aguirre,et al.  Continuous carry-over designs for fMRI , 2007, NeuroImage.

[38]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[39]  Anthony Randal McIntosh,et al.  Partial least squares analysis of neuroimaging data: applications and advances , 2004, NeuroImage.

[40]  S.C. Strother,et al.  Evaluating fMRI preprocessing pipelines , 2006, IEEE Engineering in Medicine and Biology Magazine.

[41]  T. Carlson,et al.  Patterns of Activity in the Categorical Representations of Objects , 2003, Journal of Cognitive Neuroscience.

[42]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[43]  Ron Kohavi,et al.  A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection , 1995, IJCAI.

[44]  N. Newman The Visual Neurosciences , 2005 .

[45]  Dinggang Shen,et al.  Classifying spatial patterns of brain activity with machine learning methods: Application to lie detection , 2005, NeuroImage.