Real-Time Testing With Dynamic Substructuring

In this chapter the real-time testing technique which has become known as real-time dynamic substructuring is discussed. A control systems approach is taken to develop stability and robustness criteria for real-time dynamic substructuring tests. In particular we discuss how delay and uncertainty effects in the experimental apparatus can lead to loss of accuracy, or worse, system instability. Models which take account of the delay effects are developed using both delay differential equations and transfer functions. From these models delay compensation schemes can be constructed either using inverse transfer functions or forward prediction methods. Three methods for improving robustness are described for use in combination with a delay compensator. Throughout the chapter experimental results are presented, and in the final part results from an industrial example of substructuring a helicopter lag damper are discussed in detail.

[1]  O. Wasynczuk,et al.  A model-in-the-loop interface to emulate source dynamics in a zonal DC distribution system , 2005, IEEE Transactions on Power Electronics.

[2]  David J. Wagg,et al.  Stability analysis of real‐time dynamic substructuring using delay differential equation models , 2005 .

[3]  Masayoshi Nakashima,et al.  Development, potential, and limitations of real–time online (pseudo–dynamic) testing , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  E. Martin,et al.  Control strategies for hardware-in-the-loop simulation of flexible space robots , 2000 .

[5]  Brahmananda Panda,et al.  Application of passive dampers to modern helicopters , 1996 .

[6]  Dirk Roose,et al.  Numerical bifurcation analysis of delay differential equations using DDE-BIFTOOL , 2002, TOMS.

[7]  Pankaj Pankaj,et al.  12th European Conference on Earthquake Engineering , 2002 .

[8]  Kuo-Chun Chang,et al.  Comparison of displacement coefficient method and capacity spectrum method with experimental results of RC columns , 2004 .

[9]  David J. Wagg,et al.  Control issues relating to real‐time substructuring experiments using a shaking table , 2005 .

[10]  David J. Wagg,et al.  Use of control techniques for error analysis of real time dynamic substructure testing. , 2004 .

[11]  Ulrich Füllekrug,et al.  On real-time pseudo-dynamic sub-structure testing: algorithm, numerical and experimental results , 2005 .

[12]  Jorge Ferreira,et al.  Hybrid models of hydraulic systems for hardware-in-the-loop simulation. Part 2: Experiments , 2004 .

[13]  M.I. Wallace,et al.  An adaptive polynomial based forward prediction algorithm for multi-actuator real-time dynamic substructuring , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Shuenn-Yih Chang Improved numerical dissipation for explicit methods in pseudodynamic tests , 1997 .

[15]  Max Ian Wallace Real-time dynamic substructuring for mechanical and aerospace applications : control techniques and experimental methods , 2005 .

[16]  Wayne J. Book,et al.  Electric Motors Coupled to Hydraulic Motors as Actuators for Hydraulic Hardware-in-the-Loop Simulation , 2005 .

[17]  D. Wagg,et al.  Real-time dynamic substructuring in a coupled oscillator–pendulum system , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[18]  David J. Wagg,et al.  Substructuring of dynamical systems via the adaptive minimal control synthesis algorithm , 2001 .

[19]  David J. Wagg,et al.  Novel coupling Rosenbrock‐based algorithms for real‐time dynamic substructure testing , 2008 .

[20]  J. P. Estima de Oliveira,et al.  Hybrid models of hydraulic systems for hardware-in-the-loop simulation. Part 1: Theory , 2004 .

[21]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[22]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[23]  M Maarten Steinbuch,et al.  Trajectory planning and feedforward design for electromechanical motion systems , 2005 .

[24]  David P Stoten,et al.  Using Adaptive Control for Dynamic Substructuring Tests , 2004 .

[25]  N. J. Theron,et al.  Investigation of hardware-in-the-loop for use in suspension development , 2006 .

[26]  B. F. Spencer,et al.  Active Structural Control: Theory and Practice , 1992 .

[27]  A. Preumont Vibration Control of Active Structures , 1997 .

[28]  Shuenn-Yih Chang Error Propagation in Implicit Pseudodynamic Testing of Nonlinear Systems , 2005 .

[29]  Paolo Negro,et al.  Pseudodynamic Capabilities of the ELSA Laboratory for Earthquake Testing of Large Structures , 1996 .

[30]  Martin S. Williams,et al.  Real‐time hybrid experiments with Newmark integration, MCSmd outer‐loop control and multi‐tasking strategies , 2007 .

[31]  Masayoshi Nakashima,et al.  Development of real‐time pseudo dynamic testing , 1992 .

[32]  André Preumont,et al.  Active Damping of Chatter in Machine Tools - Demonstration with a ‘Hardware-in-the-Loop’ Simulator , 2005 .

[33]  Keh-Chyuan Tsai,et al.  Improved time integration for pseudodynamic tests , 1998 .

[34]  Oreste S. Bursi,et al.  Generalized‐α methods for seismic structural testing , 2004 .

[35]  J. S. Przemieniecki Theory of matrix structural analysis , 1985 .

[36]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[37]  Peter J. Gawthrop,et al.  Emulator-based control and internal model control: Complementary approaches to robust control design , 1996, Autom..

[38]  E. Smith,et al.  Formulation : Validation, and Application of a Finite Element Model for Elastomeric Lag Dampers , 1996 .

[39]  Hosam K. Fathy,et al.  Proper Powertrain Modeling for Engine-in-the-Loop Simulation , 2005 .

[40]  Nenad Bićanić,et al.  Enhanced integral form of the Newmark time stepping scheme for pseudodynamic testing , 2001 .

[41]  T. T. Soong,et al.  Active, Hybrid, and Semi-active Structural Control: A Design and Implementation Handbook , 2005 .

[42]  Stephen A. Mahin,et al.  Cumulative experimental errors in pseudodynamic tests , 1987 .

[43]  Pierre Pegon,et al.  α-Operator splitting time integration technique for pseudodynamic testing error propagation analysis , 1997 .

[44]  D. L. Kunz ELASTOMER MODELLING FOR USE IN PREDICTING HELICOPTER LAG DAMPER BEHAVIOR , 1999 .

[45]  Sašo Jezernik Hardware-in-the-loop simulation and analysis of magnetic recording of nerve activity , 2005, Journal of Neuroscience Methods.

[46]  Masayoshi Nakashima,et al.  Online test using displacement–force mixed control , 2005 .

[47]  David J. Wagg,et al.  Bond‐graph based substructuring of dynamical systems , 2005 .

[48]  Martin S. Williams,et al.  Stability and Delay Compensation for Real-Time Substructure Testing , 2002 .

[49]  Antony Darby,et al.  The development of real–time substructure testing , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[50]  Ferit Küçükay,et al.  Virtual real-time environment for automatic-transmission control units in the form of hardware-in-the-loop , 2002 .

[51]  P. Benson Shing,et al.  Performance evaluation of a real‐time pseudodynamic test system , 2006 .

[52]  Oreste S. Bursi,et al.  Evaluation of some implicit time-stepping algorithms for pseudodynamic tests , 1996 .

[53]  Martin S. Williams,et al.  REAL-TIME SUBSTRUCTURE TESTS USING HYDRAULIC ACTUATOR , 1999 .

[54]  Dennis M. Bushnell,et al.  Scaling: Wind Tunnel to Flight ∗ , 2006 .

[55]  Andrew Plummer,et al.  Model-in-the-Loop Testing , 2006 .

[56]  J A Ferreira,et al.  Hybrid models for hardware-in-the-loop simulation of hydraulic systems Part 2: Experiments , 2004 .

[57]  Andrew G. Alleyne,et al.  Dynamic Emulation Using an Indirect Control Input , 2005 .

[58]  J A Ferreira,et al.  Hybrid models for hardware-in-the-loop simulation of hydraulic systems Part 1: Theory , 2004 .

[59]  Pui-Shum B. Shing,et al.  Implicit time integration for pseudodynamic tests , 1991 .

[60]  Norman M. Wereley,et al.  Magnetorheological Fluid and Elastomeric Lag Damper for Helicopter Stability Augmentation , 2005 .

[61]  Chris Thewalt,et al.  Performance Parameters for Pseudodynamic Tests , 1994 .

[62]  Shuenn-Yih Chang,et al.  THE γ-FUNCTION PSEUDODYNAMIC ALGORITHM , 2000 .

[63]  Masayoshi Nakashima,et al.  Real-time on-line test for MDOF systems , 1999 .

[64]  David J. Wagg,et al.  Robust real-time substructuring techniques for under-damped systems , 2007 .

[65]  Tao Wang,et al.  On‐line hybrid test combining with general‐purpose finite element software , 2006 .

[66]  Guoshan Xu,et al.  Operator‐splitting method for real‐time substructure testing , 2006 .

[67]  Y. Namita,et al.  Real‐time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber , 1999 .

[68]  R. P. Jones,et al.  An investigation into the use of hardware-in-the-loop simulation with a scaled physical prototype as an aid to design , 2001 .

[69]  M. V. Sivaselvan,et al.  REAL-TIME DYNAMIC HYBRID TESTING OF STRUCTURAL SYSTEMS , 2004 .

[70]  Anil K. Agrawal,et al.  Compensation of time-delay for control of civil engineering structures , 2000 .

[71]  Nicholas A J Lieven,et al.  Testing coupled rotor blade–lag damper vibration using real-time dynamic substructuring , 2007 .

[72]  D. Maclay,et al.  Simulation gets into the loop , 1997 .

[73]  David J. Wagg,et al.  Parametric variation of a coupled pendulum‐oscillator system using real‐time dynamic substructuring , 2007 .

[74]  David A. Bradley,et al.  Hardware-in-the-loop simulation of a pumped storage hydro station , 2003 .

[75]  Billie F. Spencer,et al.  ASCE‐journal of engineering mechanics , 1994 .

[76]  Keum-Shik Hong,et al.  Modified Skyhook Control of Semi-Active Suspensions: A New Model, Gain Scheduling, and Hardware-in-the-Loop Tuning , 2002 .

[77]  A. Blakeborough,et al.  Improved control algorithm for real‐time substructure testing , 2001 .

[78]  Shuenn-Yih Chang,et al.  Explicit Pseudodynamic Algorithm with Unconditional Stability , 2002 .

[79]  G. Magonette,et al.  Pseudo‐dynamic testing of bridges using non‐linear substructuring , 2004 .

[80]  Wolfgang Rulka,et al.  MBS Approach to Generate Equations of Motions for HiL-Simulations in Vehicle Dynamics , 2005 .

[81]  G. Benzoni CHALLENGES OF NEW GENERATION SEISMIC TESTING FACILITIES , 2001 .