RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation

We present RangeRCNN, a novel and effective 3D object detection framework based on the range image representation. Most existing 3D object detection methods are either voxel-based or point-based. Though several optimizations have been introduced to ease the sparsity issue and speed up the running time, the two representations are still computationally inefficient. Compared to these two representations, the range image representation is dense and compact which can exploit the powerful 2D convolution and avoid the uncertain receptive field caused by the sparsity issue. Even so, the range image representation is not preferred in 3D object detection due to the scale variation and occlusion. In this paper, we utilize the dilated residual block to better adapt different object scales and obtain a more flexible receptive field on range image. Considering the scale variation and occlusion of the range image, we propose the RV-PV-BEV~(Range View to Point View to Bird's Eye View) module to transfer the feature from the range view to the bird's eye view. The anchor is defined in the BEV space which avoids the scale variation and occlusion. Both RV and BEV cannot provide enough information for height estimation, so we propose a two-stage RCNN for better 3D detection performance. The point view aforementioned does not only serve as a bridge from RV to BEV but also provides pointwise features for RCNN. Extensive experiments show that the proposed RangeRCNN achieves state-of-the-art performance on the KITTI 3D object detection dataset. We prove that the range image based methods can be effective on the KITTI dataset which provides more possibilities for real-time 3D object detection.

[1]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Weijing Shi,et al.  Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Garrison W. Cottrell,et al.  Understanding Convolution for Semantic Segmentation , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[4]  Bin Yang,et al.  Multi-Task Multi-Sensor Fusion for 3D Object Detection , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Cyrill Stachniss,et al.  SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[6]  Leonidas J. Guibas,et al.  KPConv: Flexible and Deformable Convolution for Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[7]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  Bo Li,et al.  SECOND: Sparsely Embedded Convolutional Detection , 2018, Sensors.

[9]  Carlos Vallespi-Gonzalez,et al.  LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Wei Wu,et al.  PointCNN: Convolution On X-Transformed Points , 2018, NeurIPS.

[11]  Leonidas J. Guibas,et al.  Deep Hough Voting for 3D Object Detection in Point Clouds , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[12]  Xiaogang Wang,et al.  PointRCNN: 3D Object Proposal Generation and Detection From Point Cloud , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[13]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[14]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Zhixin Wang,et al.  Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[16]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[17]  Ruigang Yang,et al.  IoU Loss for 2D/3D Object Detection , 2019, 2019 International Conference on 3D Vision (3DV).

[18]  Xiaogang Wang,et al.  PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Tian Xia,et al.  Vehicle Detection from 3D Lidar Using Fully Convolutional Network , 2016, Robotics: Science and Systems.

[20]  Jiong Yang,et al.  PointPillars: Fast Encoders for Object Detection From Point Clouds , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Steven Lake Waslander,et al.  Joint 3D Proposal Generation and Object Detection from View Aggregation , 2017, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[22]  Chunxiang Wang,et al.  Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[23]  Xiaoyong Shen,et al.  STD: Sparse-to-Dense 3D Object Detector for Point Cloud , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[24]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[25]  Xiang Bai,et al.  EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection , 2020, ECCV.

[26]  Ji Wan,et al.  Multi-view 3D Object Detection Network for Autonomous Driving , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Lei Zhang,et al.  Structure Aware Single-Stage 3D Object Detection From Point Cloud , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Bin Yang,et al.  Deep Continuous Fusion for Multi-sensor 3D Object Detection , 2018, ECCV.

[29]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[30]  Xiaogang Wang,et al.  From Points to Parts: 3D Object Detection From Point Cloud With Part-Aware and Part-Aggregation Network , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Jiaya Jia,et al.  Fast Point R-CNN , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[32]  Cyrill Stachniss,et al.  RangeNet ++: Fast and Accurate LiDAR Semantic Segmentation , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[33]  Yin Zhou,et al.  VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[34]  Yanan Sun,et al.  3DSSD: Point-Based 3D Single Stage Object Detector , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Leonidas J. Guibas,et al.  Frustum PointNets for 3D Object Detection from RGB-D Data , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Kurt Keutzer,et al.  SqueezeSeg: Convolutional Neural Nets with Recurrent CRF for Real-Time Road-Object Segmentation from 3D LiDAR Point Cloud , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).