Spherical Diffusion for 3D Surface Smoothing
暂无分享,去创建一个
[1] Thomas Bülow. Multiscale Image Processing on the Sphere , 2002, DAGM-Symposium.
[2] Berthold K. P. Horn. Extended Gaussian images , 1984, Proceedings of the IEEE.
[3] Mutsuo Sano,et al. 3D object representation using spherical harmonic functions , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).
[4] Andrew P. Witkin,et al. Scale-space filtering: A new approach to multi-scale description , 1984, ICASSP.
[5] D. Healy,et al. Computing Fourier Transforms and Convolutions on the 2-Sphere , 1994 .
[6] Richard Courant,et al. Methods of Mathematical Physics, 1 , 1955 .
[7] Willi Freeden,et al. Non-orthogonal expansions on the sphere , 1995 .
[8] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Laplacian on a Riemannian Manifold , 1997 .
[9] Jan Sijbers,et al. Efficient algorithm fo the computation of 3D Fourier descriptors , 2002, Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.
[10] M. Tinkham. Group Theory and Quantum Mechanics , 1964 .
[11] Sarp Ertürk,et al. Efficient Representation of 3D Human Head Models , 1999, BMVC.
[12] T. Bulow. Spherical diffusion for 3D surface smoothing , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[13] Gabriel Taubin,et al. Geometric Signal Processing on Polygonal Meshes , 2000, Eurographics.
[14] A. J. Barret,et al. Methods of Mathematical Physics, Volume I . R. Courant and D. Hilbert. Interscience Publishers Inc., New York. 550 pp. Index. 75s. net. , 1954, The Journal of the Royal Aeronautical Society.
[15] Atsushi Imiya,et al. On the History of Gaussian Scale-Space Axiomatics , 1997, Gaussian Scale-Space Theory.
[16] Guido Gerig,et al. Parametrization of Closed Surfaces for 3-D Shape Description , 1995, Comput. Vis. Image Underst..
[17] T. Lindeberg,et al. Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .
[18] J. Koenderink. The structure of images , 2004, Biological Cybernetics.
[19] Ross T. Whitaker,et al. Geometric surface smoothing via anisotropic diffusion of normals , 2002, IEEE Visualization, 2002. VIS 2002..
[20] Dmitry B. Goldgof,et al. The Use of Three- and Four-Dimensional Surface Harmonics for Rigid and Nonrigid Shape Recovery and Representation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[21] Gabriel Taubin,et al. A signal processing approach to fair surface design , 1995, SIGGRAPH.
[22] Mark Meyer,et al. Implicit fairing of irregular meshes using diffusion and curvature flow , 1999, SIGGRAPH.
[23] Thomas Bülow,et al. Surface Representations Using Spherical Harmonics and Gabor Wavelets on the Sphere , 2001 .
[24] Andrew P. Witkin,et al. Scale-Space Filtering , 1983, IJCAI.
[25] Yutaka Ohtake,et al. A comparison of mesh smoothing methods , 2003 .
[26] Dana H. Ballard,et al. Computer Vision , 1982 .
[27] A. Makadia,et al. Image processing in catadioptric planes: spatiotemporal derivatives and optical flow computation , 2002, Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in conjunction with ECCV'02.
[28] Frédo Durand,et al. Non-iterative, feature-preserving mesh smoothing , 2003, ACM Trans. Graph..
[29] Katsushi Ikeuchi,et al. The Complex EGI: A New Representation for 3-D Pose Determination , 1993, IEEE Trans. Pattern Anal. Mach. Intell..
[30] G. Chirikjian,et al. Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .
[31] Joachim Weickert,et al. Anisotropic diffusion in image processing , 1996 .
[32] Nasser Khalili,et al. Curvature Computation on Free-Form 3-D Meshes at Multiple Scales , 2001, Comput. Vis. Image Underst..
[33] J. J. Koenderink,et al. Dynamic shape , 1986, Biological Cybernetics.
[34] Makoto Sato,et al. Scale space filtering on spherical pattern , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol. III. Conference C: Image, Speech and Signal Analysis,.