Hierarchies of Cortical Areas

[1]  S. A. Talbot,et al.  Physiological Studies on Neural Mechanisms of Visual Localization and Discrimination , 1941 .

[2]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[3]  M. Mishkin,et al.  OCCIPITOTEMPORAL CORTICOCORTICAL CONNECTIONS IN THE RHESUS MONKEY. , 1965, Experimental neurology.

[4]  T. Powell,et al.  An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. , 1970, Brain : a journal of neurology.

[5]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[6]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[7]  A. Sillito The contribution of inhibitory mechanisms to the receptive field properties of neurones in the striate cortex of the cat. , 1975, The Journal of physiology.

[8]  B. Dreher,et al.  Visual receptive-field properties of cells in area 18 of cat's cerebral cortex before and after acute lesions in area 17. , 1975, Journal of neurophysiology.

[9]  J. Stone,et al.  Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. , 1976, Journal of neurophysiology.

[10]  J. Malpeli,et al.  The effect of striate cortex cooling on area 18 cells in the monkey , 1977, Brain Research.

[11]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[12]  G. Henry,et al.  Ordinal position of neurons in cat striate cortex. , 1979, Journal of neurophysiology.

[13]  A. Sillito,et al.  A re-evaluation of the mechanisms underlying simple cell orientation selectivity , 1980, Brain Research.

[14]  P. Schiller,et al.  Effect of cooling area 18 on striate cortex cells in the squirrel monkey. , 1982, Journal of neurophysiology.

[15]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[16]  J. Malpeli Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus. , 1983, Journal of neurophysiology.

[17]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  A. L. Humphrey,et al.  Projection patterns of individual X‐ and Y‐cell axons from the lateral geniculate nucleus to cortical area 17 in the cat , 1985, The Journal of comparative neurology.

[19]  J. Allman,et al.  Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. , 1985, Annual review of neuroscience.

[20]  H. Barbas Pattern in the laminar origin of corticocortical connections , 1986, The Journal of comparative neurology.

[21]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[22]  K. Rockland,et al.  Terminal arbors of individual “Feedback” axons projecting from area V2 to V1 in the macaque monkey: A study using immunohistochemistry of anterogradely transported Phaseolus vulgaris‐leucoagglutinin , 1989, The Journal of comparative neurology.

[23]  D. Whitteridge,et al.  Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in striate cortex of the macaque monkey , 1989, The Journal of comparative neurology.

[24]  J. Bullier,et al.  Visual activity in area V2 during reversible inactivation of area 17 in the macaque monkey. , 1989, Journal of neurophysiology.

[25]  K. Rockland,et al.  Bistratified distribution of terminal arbors of individual axons projecting from area V1 to middle temporal area (MT) in the macaque monkey , 1989, Visual Neuroscience.

[26]  H. Sherk Functional organization of input from areas 17 and 18 to an extrastriate area in the cat , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[27]  Paul Antoine Salin,et al.  Projections from Areas 18 and 19 to Cat Striate Cortex: Divergence and Laminar Specificity , 1991, The European journal of neuroscience.

[28]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[29]  M. Mignard,et al.  Paths of information flow through visual cortex. , 1991, Science.

[30]  P A Salin,et al.  Visual activity in macaque area V4 depends on area 17 input. , 1991, Neuroreport.

[31]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[32]  D. McCormick,et al.  Corticothalamic activation modulates thalamic firing through glutamate "metabotropic" receptors. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[33]  J. Budd,et al.  A numerical analysis of the geniculocortical input to striate cortex in the monkey. , 1994, Cerebral cortex.

[34]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  P Girard,et al.  Visual latencies in cytochrome oxidase bands of macaque area V2. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  C. Koch,et al.  Recurrent excitation in neocortical circuits , 1995, Science.

[38]  K. Rockland,et al.  Morphology of individual axons projecting from area V2 to MT in the macaque , 1995, The Journal of comparative neurology.

[39]  P A Salin,et al.  Corticocortical connections in the visual system: structure and function. , 1995, Physiological reviews.

[40]  K. Martin,et al.  Excitatory synaptic inputs to spiny stellate cells in cat visual cortex , 1996, Nature.

[41]  Anthony J. Movshon,et al.  Visual Response Properties of Striate Cortical Neurons Projecting to Area MT in Macaque Monkeys , 1996, The Journal of Neuroscience.

[42]  A. Burkhalter,et al.  Different Balance of Excitation and Inhibition in Forward and Feedback Circuits of Rat Visual Cortex , 1996, The Journal of Neuroscience.

[43]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[44]  S. Sherman,et al.  Metabotropic glutamate receptors switch visual response mode of lateral geniculate nucleus cells from burst to tonic. , 1996, Journal of neurophysiology.

[45]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[46]  H. Barbas,et al.  Cortical structure predicts the pattern of corticocortical connections. , 1997, Cerebral cortex.

[47]  U. Eysel,et al.  GABA-induced inactivation of functionally characterized sites in cat striate cortex: Effects on orientation tuning and direction selectivity , 1997, Visual Neuroscience.

[48]  J. Bullier,et al.  Corticocortical connections between visual areas 17 and 18a of the rat studied in vitro: spatial and temporal organisation of functional synaptic responses , 1997, Experimental Brain Research.

[49]  G. Orban,et al.  The spatial distribution of the antagonistic surround of MT/V5 neurons. , 1997, Cerebral cortex.

[50]  Paul R. Martin,et al.  Evidence that Blue‐on Cells are Part of the Third Geniculocortical Pathway in Primates , 1997, The European journal of neuroscience.

[51]  C. Koch,et al.  Constraints on cortical and thalamic projections: the no-strong-loops hypothesis , 1998, Nature.

[52]  B Jouve,et al.  A mathematical approach to the connectivity between the cortical visual areas of the macaque monkey. , 1998, Cerebral cortex.

[53]  R. Guillery,et al.  On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  K. Rockland,et al.  Convergence and branching patterns of round, type 2 corticopulvinar axons , 1998, The Journal of comparative neurology.

[55]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[56]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[57]  D. V. van Essen,et al.  Response modulation by texture surround in primate area V1: Correlates of “popout” under anesthesia , 1999, Visual Neuroscience.

[58]  David J. Calkins,et al.  Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse , 1999, Neuron.

[59]  A. Grinvald,et al.  Linking spontaneous activity of single cortical neurons and the underlying functional architecture. , 1999, Science.

[60]  Y. Miyashita,et al.  Top-down signal from prefrontal cortex in executive control of memory retrieval , 1999, Nature.

[61]  I. Ohzawa,et al.  Asymmetric Suppression Outside the Classical Receptive Field of the Visual Cortex , 1999, The Journal of Neuroscience.

[62]  H. Kennedy,et al.  Laminar Distribution of Neurons in Extrastriate Areas Projecting to Visual Areas V1 and V4 Correlates with the Hierarchical Rank and Indicates the Operation of a Distance Rule , 2000, The Journal of Neuroscience.

[63]  K. Martin,et al.  Termination of the geniculocortical projection in the striate cortex of macaque monkey: A quantitative immunoelectron microscopic study , 2000, The Journal of comparative neurology.

[64]  D. Dacey Parallel pathways for spectral coding in primate retina. , 2000, Annual review of neuroscience.

[65]  Leslie G. Ungerleider,et al.  Contextual Modulation in Primary Visual Cortex of Macaques , 2001, The Journal of Neuroscience.

[66]  P Girard,et al.  Feedback connections act on the early part of the responses in monkey visual cortex. , 2001, Journal of neurophysiology.

[67]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[68]  J. Bullier,et al.  Response modulations by static texture surround in area V1 of the macaque monkey do not depend on feedback connections from V2. , 2001, Journal of neurophysiology.

[69]  J. Bullier,et al.  Feedforward and feedback connections between areas V1 and V2 of the monkey have similar rapid conduction velocities. , 2001, Journal of neurophysiology.

[70]  J. Bullier,et al.  The role of feedback connections in shaping the responses of visual cortical neurons. , 2001, Progress in brain research.

[71]  Christopher C. Pack,et al.  Temporal dynamics of a neural solution to the aperture problem in visual area MT of macaque brain , 2001, Nature.

[72]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[73]  Jean Bennett,et al.  Lateral Connectivity and Contextual Interactions in Macaque Primary Visual Cortex , 2002, Neuron.

[74]  L. Martinez,et al.  Completing the Corticofugal Loop: A Visual Role for the Corticogeniculate Type 1 Metabotropic Glutamate Receptor , 2002, The Journal of Neuroscience.

[75]  D. Mackay,et al.  Differential responses of cat visual cortical cells to textured stimuli , 1975, Experimental Brain Research.

[76]  C. Koch,et al.  The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus , 2004, Experimental Brain Research.