Overview and comparative study of dimensionality reduction techniques for high dimensional data

Abstract The recent developments in the modern data collection tools, techniques, and storage capabilities are leading towards huge volume of data. The dimensions of data indicate the number of features that have been measured for each observation. It has become a challenging task to analyze high dimensional data. Different dimensionality reduction techniques are available in literature to eliminate irrelevant and redundant features. Selection of an appropriate dimension reduction technique can help to enhance the processing speed and reduce the time and effort required to extract valuable information. This paper presents the state-of-the art dimensionality reduction techniques and their suitability for different types of data and application areas. Furthermore, the issues of dimensionality reduction techniques have been highlighted that can affect the accuracy and relevance of results.

[1]  Heikki Mannila,et al.  Random projection in dimensionality reduction: applications to image and text data , 2001, KDD '01.

[2]  Brian S. Caffo,et al.  Multilevel functional principal component analysis , 2009 .

[3]  Johan A. K. Suykens,et al.  Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction , 2004, Bioinform..

[4]  Kaile Su,et al.  Automated Chinese Essay Scoring from Topic Perspective Using Regularized Latent Semantic Indexing , 2014, 2014 22nd International Conference on Pattern Recognition.

[5]  S. Greven,et al.  Multivariate Functional Principal Component Analysis for Data Observed on Different (Dimensional) Domains , 2015, 1509.02029.

[6]  David A. Landgrebe,et al.  High dimensional feature reduction via projection pursuit , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[7]  Xiaofei Wang,et al.  Human action recognition via compressive-sensing-based dimensionality reduction , 2015 .

[8]  Bin Fang,et al.  A Simple and Effective Generalization of Exponential Matrix Discriminant Analysis and Its Application to Face Recognition , 2018, IEICE Trans. Inf. Syst..

[9]  Wady Naanaa,et al.  Local commute-time guided MDS for 3D non-rigid object retrieval , 2017, Applied Intelligence.

[10]  Somaye Ahmadkhani,et al.  Face recognition using supervised probabilistic principal component analysis mixture model in dimensionality reduction without loss framework , 2016, IET Comput. Vis..

[11]  Tao Li,et al.  Locality-regularized linear regression discriminant analysis for feature extraction , 2018, Inf. Sci..

[12]  B. Harley,et al.  Visualizing Intrapopulation Hematopoietic Cell Heterogeneity with Self-Organizing Maps of SIMS Data. , 2018, Tissue engineering. Part C, Methods.

[13]  Nasser Khalili,et al.  Stochastic modelling of crack propagation in materials with random properties using isometric mapping for dimensionality reduction of nonlinear data sets , 2018 .

[14]  Hua Yu,et al.  A direct LDA algorithm for high-dimensional data - with application to face recognition , 2001, Pattern Recognit..

[15]  F. S. Tsai,et al.  Dimensionality reduction techniques for data exploration , 2007, 2007 6th International Conference on Information, Communications & Signal Processing.

[16]  Yong Xu,et al.  One improvement to two-dimensional locality preserving projection method for use with face recognition , 2009, Neurocomputing.

[17]  Dino Isa,et al.  Using the self organizing map for clustering of text documents , 2009, Expert Syst. Appl..

[18]  A. Platzer Visualization of SNPs with t-SNE , 2013, PloS one.

[19]  Michel Verleysen,et al.  Nonlinear projection with curvilinear distances: Isomap versus curvilinear distance analysis , 2004, Neurocomputing.

[20]  Jieping Ye,et al.  Two-Dimensional Linear Discriminant Analysis , 2004, NIPS.

[21]  Chien-Liang Liu,et al.  Clustering data with partial background information , 2019, Int. J. Mach. Learn. Cybern..

[22]  Shanwen Zhang,et al.  Dimension Reduction Using Semi-Supervised Locally Linear Embedding for Plant Leaf Classification , 2009, ICIC.

[23]  T. Landauer,et al.  Indexing by Latent Semantic Analysis , 1990 .

[24]  Sethu Vijayakumar,et al.  Use of regularized discriminant analysis improves myoelectric hand movement classification , 2017, 2017 8th International IEEE/EMBS Conference on Neural Engineering (NER).

[25]  Xiangtao Zheng,et al.  Dimensionality Reduction by Spatial–Spectral Preservation in Selected Bands , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[26]  S. C. Ng,et al.  Principal component analysis to reduce dimension on digital image , 2017 .

[27]  Zhenyu He,et al.  Joint sparse principal component analysis , 2017, Pattern Recognit..

[28]  Zhong Jin,et al.  Face recognition using discriminant locality preserving projections based on maximum margin criterion , 2010, Pattern Recognit..

[29]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[30]  Wlodzislaw Duch,et al.  Projection Pursuit Constructive Neural Networks Based on Quality of Projected Clusters , 2008, ICANN.

[31]  J. Baumbach,et al.  A singular value decomposition approach for improved taxonomic classification of biological sequences , 2011, BMC Genomics.

[32]  S. J. Press,et al.  Choosing between Logistic Regression and Discriminant Analysis , 1978 .

[33]  David Gefen,et al.  Identifying patterns in medical records through latent semantic analysis , 2018, Commun. ACM.

[34]  Barbara Hammer,et al.  Parametric nonlinear dimensionality reduction using kernel t-SNE , 2015, Neurocomputing.

[35]  G. Nason Three‐Dimensional Projection Pursuit , 1995 .

[36]  M. Close,et al.  Applying linear discriminant analysis to predict groundwater redox conditions conducive to denitrification , 2018 .

[37]  C. Posse Projection pursuit exploratory data analysis , 1995 .

[38]  Sheng Huang,et al.  Discriminative Probabilistic Latent Semantic Analysis with Application to Single Sample Face Recognition , 2018, Neural Processing Letters.

[39]  Thelma Sáfadi,et al.  Independent Component Analysis (ICA) based-clustering of temporal RNA-seq data , 2017, PloS one.

[40]  Zhaoheng Liu,et al.  Bearing fault feature extraction using autoregressive coefficients, linear discriminant analysis and support vector machine under variable operating conditions , 2018 .

[41]  Vanessa Speight,et al.  Self-Organizing Maps For Knowledge Discovery From Corporate Databases To Develop Risk Based Prioritization For Stagnation , 2014 .

[42]  R. Slatcher,et al.  Latent Semantic Analysis: A new measure of patient-physician communication. , 2018, Social science & medicine.

[43]  Bernhard Schölkopf,et al.  Kernel Principal Component Analysis , 1997, ICANN.

[44]  Wenhui Fan,et al.  A projection pursuit dynamic cluster model based on a memetic algorithm , 2015 .

[45]  Zoubin Ghahramani,et al.  Unifying linear dimensionality reduction , 2014, 1406.0873.

[46]  Kun He,et al.  Neighbourhood-preserving dimension reduction via localised multidimensional scaling , 2018, Theor. Comput. Sci..

[47]  Stephen M. Smith,et al.  Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data , 2017, NeuroImage.

[48]  Kaizhu Huang,et al.  m-SNE: Multiview Stochastic Neighbor Embedding , 2011, IEEE Trans. Syst. Man Cybern. Part B.

[49]  Kai-Tai Fang,et al.  Multiple outlier detection in multivariate data using projection pursuit techniques , 2000 .

[50]  Ning Chen,et al.  An Extension of Self-organizing Maps to Categorical Data , 2005, EPIA.

[51]  Aedín C. Culhane,et al.  Dimension reduction techniques for the integrative analysis of multi-omics data , 2016, Briefings Bioinform..

[52]  Gang Wang,et al.  Nonlinear Dimensionality Reduction for Discriminative Analytics of Multiple Datasets , 2018, IEEE Transactions on Signal Processing.

[53]  K. Simek Properties of a Singular Value Decomposition Based Dynamical Model of Gene Expression Data , 2003 .

[54]  Claudio Cobelli,et al.  Parsimonious Description of Glucose Variability in Type 2 Diabetes by Sparse Principal Component Analysis , 2016, Journal of diabetes science and technology.

[55]  Tim Verdonck,et al.  Robust kernel principal component analysis and classification , 2010, Adv. Data Anal. Classif..

[56]  Hanqing Lu,et al.  Supervised kernel locality preserving projections for face recognition , 2005, Neurocomputing.

[57]  Bin Luo,et al.  2D-LPP: A two-dimensional extension of locality preserving projections , 2007, Neurocomputing.

[58]  Markus Reichstein,et al.  dimRed and coRanking - Unifying Dimensionality Reduction in R , 2018, R J..

[59]  Xin Yang,et al.  Face Recognition Using Improved-LDA , 2004, ICIAR.

[60]  Mousa Shamsi,et al.  A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine , 2017, Journal of medical signals and sensors.

[61]  Robin Sibson,et al.  What is projection pursuit , 1987 .

[62]  Muhammad Kashif Hanif,et al.  Text Mining: Techniques, Applications and Issues , 2016 .

[63]  Aleix M. Martínez,et al.  Subclass discriminant analysis , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Xiaolong Teng,et al.  Face recognition using discriminant locality preserving projections , 2006, Image Vis. Comput..

[65]  A Supervised LPP Algorithm and Its Application to Face Recognition: A Supervised LPP Algorithm and Its Application to Face Recognition , 2011 .

[66]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[67]  Lei Zhu,et al.  Face recognition based on orthogonal discriminant locality preserving projections , 2007, Neurocomputing.

[68]  Khu P. Nguyen,et al.  An adaptive Latent Semantic Analysis for text mining , 2017, 2017 International Conference on System Science and Engineering (ICSSE).

[69]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[70]  Teuvo Kohonen,et al.  The self-organizing map , 1990, Neurocomputing.

[71]  Aboul Ella Hassanien,et al.  Linear discriminant analysis: A detailed tutorial , 2017, AI Commun..

[72]  Xiaoping Hu,et al.  Ranking and averaging independent component analysis by reproducibility (RAICAR) , 2008, Human brain mapping.

[73]  D. G. Simpson,et al.  Robust principal component analysis for functional data , 2007 .

[74]  Ferat Sahin,et al.  A survey on feature selection methods , 2014, Comput. Electr. Eng..

[75]  Yong Wang,et al.  Matrix exponential based discriminant locality preserving projections for feature extraction , 2018, Neural Networks.

[76]  P. Hall On Projection Pursuit Regression , 1989 .

[77]  Malcolm I. Heywood,et al.  Comparing and Combining Dimension Reduction Techniques for Efficient Text Clustering , 2005 .

[78]  Lin Wu,et al.  Deep Linear Discriminant Analysis on Fisher Networks: A Hybrid Architecture for Person Re-identification , 2016, Pattern Recognit..

[79]  James Zou,et al.  Exploring patterns enriched in a dataset with contrastive principal component analysis , 2018, Nature Communications.

[80]  Peter Wiemer-Hastings,et al.  Latent semantic analysis , 2004, Annu. Rev. Inf. Sci. Technol..

[81]  Václav Hlavác,et al.  Greedy Kernel Principal Component Analysis , 2006, Cognitive Vision Systems.

[82]  Krzysztof J. Cios,et al.  Multi-objective genetic programming for feature extraction and data visualization , 2015, Soft Computing.

[83]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[84]  Liu Lu-lu Online Palmprint Identification Based on Improved 2D PCA , 2005 .

[85]  Deping Hu,et al.  Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Feature Mapping. , 2017, Journal of chemical theory and computation.

[86]  Barbara Hammer,et al.  Data visualization by nonlinear dimensionality reduction , 2015, WIREs Data Mining Knowl. Discov..

[87]  Barbara Hammer,et al.  Efficient approximations of robust soft learning vector quantization for non-vectorial data , 2015, Neurocomputing.

[88]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[89]  Soledad Espezua,et al.  A Projection Pursuit framework for supervised dimension reduction of high dimensional small sample datasets , 2015, Neurocomputing.

[90]  Ganesh K. Venayagamoorthy,et al.  Recognition of facial expressions using Gabor wavelets and learning vector quantization , 2008, Eng. Appl. Artif. Intell..

[91]  Peter Filzmoser,et al.  Guided Projections for Analyzing the Structure of High-Dimensional Data , 2018, Journal of Computational and Graphical Statistics.

[92]  Stephen M. Smith,et al.  Probabilistic independent component analysis for functional magnetic resonance imaging , 2004, IEEE Transactions on Medical Imaging.

[93]  Yongchang Wang,et al.  Research and implementation of SVD in machine learning , 2017, 2017 IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS).

[94]  Marimuthu Palaniswami,et al.  Anomalous Crowd Event Analysis Using Isometric Mapping , 2015, SIRS.

[95]  Barry J. Babin,et al.  Multivariate Data Analysis: Its Approach, Evolution, and Impact , 2019, The Great Facilitator.

[96]  Dianne Cook,et al.  PPtree: Projection pursuit classification tree , 2013 .

[97]  Adam W. Hanley,et al.  The shape of self-extension: Mapping the extended self with multidimensional scaling , 2018 .

[98]  W. Wong,et al.  Supervised optimal locality preserving projection , 2012, Pattern Recognit..

[99]  J. Meulman The integration of multidimensional scaling and multivariate analysis with optimal transformations , 1992 .

[100]  Yiannis Kompatsiaris,et al.  Mixture Subclass Discriminant Analysis , 2011, IEEE Signal Processing Letters.

[101]  C.-C. Jay Kuo,et al.  Efficient Text Classification Using Tree-structured Multi-linear Principal Component Analysis , 2018, 2018 24th International Conference on Pattern Recognition (ICPR).

[102]  Yoshikazu Washizawa,et al.  Subset kernel principal component analysis , 2009, 2009 IEEE International Workshop on Machine Learning for Signal Processing.

[103]  U. Kruger,et al.  Block adaptive kernel principal component analysis for nonlinear process monitoring , 2016 .

[104]  Wojtek J. Krzanowski,et al.  Projection Pursuit Clustering for Exploratory Data Analysis , 2003 .

[105]  Mia Hubert,et al.  ROBPCA: A New Approach to Robust Principal Component Analysis , 2005, Technometrics.

[106]  Michel Verleysen,et al.  The Curse of Dimensionality in Data Mining and Time Series Prediction , 2005, IWANN.

[107]  Serkan Günal,et al.  Text classification using genetic algorithm oriented latent semantic features , 2014, Expert Syst. Appl..

[108]  Chi Ma,et al.  Fault diagnosis of nonlinear processes using multiscale KPCA and multiscale KPLS , 2011 .

[109]  Theodore B. Trafalis,et al.  A Hybrid Forecasting Model for Stock Market Prediction , 2017 .

[110]  Luigi Fortuna,et al.  Dimensionality reduction in epidemic spreading models , 2015 .

[111]  Frank-Michael Schleif Small sets of random Fourier features by kernelized Matrix LVQ , 2017, 2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM).

[112]  David A. Landgrebe,et al.  Hyperspectral data analysis and supervised feature reduction via projection pursuit , 1999, IEEE Trans. Geosci. Remote. Sens..

[113]  Lei Chen,et al.  Curse of Dimensionality , 2018, Encyclopedia of Database Systems.

[114]  C. Posse Tools for Two-Dimensional Exploratory Projection Pursuit , 1995 .

[115]  Erzsébet Merényi,et al.  SOM-empowered graph segmentation for fast automatic clustering of large and complex data , 2017, 2017 12th International Workshop on Self-Organizing Maps and Learning Vector Quantization, Clustering and Data Visualization (WSOM).

[116]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[117]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[118]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[119]  Vikas Chaudhary,et al.  Community SOM (CSOM): An Improved Self-Organizing Map Learning Technique , 2015, Int. J. Fuzzy Syst..

[120]  Gang Liu,et al.  Orthogonal sparse linear discriminant analysis , 2018, Int. J. Syst. Sci..

[121]  Dhammika Amaratunga,et al.  High-dimensional data , 2016 .

[122]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[123]  Dianne Cook,et al.  Projection Pursuit for Exploratory Supervised Classification , 2005 .

[124]  Giovanni Pilato,et al.  The Use of Latent Semantic Analysis in the Positive Psychology: A Comparison with Twitter Posts , 2017, 2017 IEEE 11th International Conference on Semantic Computing (ICSC).

[125]  Constantine Kotropoulos,et al.  Robust Multidimensional Scaling Using a Maximum Correntropy Criterion , 2017, IEEE Transactions on Signal Processing.

[126]  Dimitrios Gunopulos,et al.  Non-linear dimensionality reduction techniques for classification and visualization , 2002, KDD.

[127]  Baoqun Yin,et al.  A novel landmark point selection method for L-ISOMAP , 2016, 2016 12th IEEE International Conference on Control and Automation (ICCA).

[128]  Dianne Cook,et al.  A projection pursuit index for large p small n data , 2010, Stat. Comput..

[129]  Manojit Chattopadhyay,et al.  A Comparison of Self-organising Maps and Principal Components Analysis , 2016 .

[130]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[131]  Henrik Boström,et al.  Choice of dimensionality reduction methods for feature and classifier fusion with nearest neighbor classifiers , 2012, 2012 15th International Conference on Information Fusion.

[132]  Yongsheng Gao,et al.  Locality-Regularized Linear Regression for face recognition , 2012, Proceedings of the 21st International Conference on Pattern Recognition (ICPR2012).

[133]  Nicholas E Evangelopoulos,et al.  Latent semantic analysis. , 2013, Wiley interdisciplinary reviews. Cognitive science.

[134]  Kiran Kumari Patil,et al.  Weather and Crop Prediction Using Modified Self Organizing Map for Mysore Region , 2018 .

[135]  Polat Ozlem,et al.  Protein Fold Recognition Using Self-Organizing Map Neural Network , 2016 .

[136]  Daniel A. Keim,et al.  SOMFlow: Guided Exploratory Cluster Analysis with Self-Organizing Maps and Analytic Provenance , 2018, IEEE Transactions on Visualization and Computer Graphics.

[137]  G. Baudat,et al.  Generalized Discriminant Analysis Using a Kernel Approach , 2000, Neural Computation.

[138]  Jingkuan Song,et al.  Learning in high-dimensional multimedia data: the state of the art , 2015, Multimedia Systems.

[139]  Peter W. Foltz,et al.  An introduction to latent semantic analysis , 1998 .

[140]  Julio Ortega Lopera,et al.  PCA filtering and probabilistic SOM for network intrusion detection , 2015, Neurocomputing.

[141]  Matti Pietikäinen,et al.  Supervised Locally Linear Embedding Algorithm for Pattern Recognition , 2003, IbPRIA.

[142]  Yuxiao Hu,et al.  Learning a locality preserving subspace for visual recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[143]  Haiping Lu,et al.  MPCA: Multilinear Principal Component Analysis of Tensor Objects , 2008, IEEE Transactions on Neural Networks.

[144]  Amir Najafi,et al.  Nonlinear Dimensionality Reduction via Path-Based Isometric Mapping , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[145]  D. Massart,et al.  Sequential projection pursuit using genetic algorithms for data mining of analytical data. , 2000, Analytical chemistry.

[146]  Bráulio Roberto Gonçalves Marinho Couto,et al.  Retrieval of Enterobacteriaceae drug targets using singular value decomposition , 2015, Bioinform..

[147]  Ali Dolati,et al.  A Copula Based ICA Algorithm and Its Application to Time Series Clustering , 2018, J. Classif..

[148]  Qi Wu,et al.  Semi-supervised Regularized Discriminant Analysis for EEG-Based BCI System , 2017, IDEAL.

[149]  Pengfei Shi,et al.  Object Tracking using Incremental 2D-PCA Learning and ML Estimation , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[150]  Jiashu Zhang,et al.  Discriminant Locality Preserving Projections Based on L1-Norm Maximization , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[151]  Tao Jiang,et al.  Projection Pursuit: A General Methodology of Wide-Area Coherency Detection in Bulk Power Grid , 2016, IEEE Transactions on Power Systems.

[152]  Xiaofei He Incremental semi-supervised subspace learning for image retrieval , 2004, MULTIMEDIA '04.

[153]  Zhifen Zhang,et al.  Single-Channel Blind Source Separation and Its Application on Arc Sound Signal Processing , 2018 .

[154]  John W. Tukey,et al.  A Projection Pursuit Algorithm for Exploratory Data Analysis , 1974, IEEE Transactions on Computers.

[155]  Kourosh Modarresi,et al.  Unsupervised Feature Extraction Using Singular Value Decomposition , 2015, ICCS.

[156]  C. Balasubramanian,et al.  Propitiating behavioral variability for mouse dynamics using dimensionality reduction based approach , 2016, 2016 International Conference on Computing Technologies and Intelligent Data Engineering (ICCTIDE'16).

[157]  Kevin S. Brown,et al.  An algorithm for separation of mixed sparse and Gaussian sources , 2017, PloS one.

[158]  Joshua B. Tenenbaum,et al.  Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.

[159]  James F. Peters,et al.  Multi-manifold LLE learning in pattern recognition , 2015, Pattern Recognit..

[160]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[161]  H. Abdi,et al.  A constrained singular value decomposition method that integrates sparsity and orthogonality , 2019, PloS one.

[162]  Huanxin Zou,et al.  Performance comparison of target classification in SAR images based on PCA and 2D-PCA features , 2009, 2009 2nd Asian-Pacific Conference on Synthetic Aperture Radar.

[163]  Zhongliang Jing,et al.  Local-information-based uncorrelated feature extraction , 2006 .

[164]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[165]  Michel Wedel,et al.  Challenges and opportunities in high-dimensional choice data analyses , 2008 .

[166]  Fan He,et al.  Super-Gaussian BSS Using Fast-ICA with Chebyshev–Pade Approximant , 2018, Circuits Syst. Signal Process..

[167]  Aleksandra Pizurica,et al.  Semisupervised Local Discriminant Analysis for Feature Extraction in Hyperspectral Images , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[168]  Nitin Kumar,et al.  Random permutation principal component analysis for cancelable biometric recognition , 2017, Applied Intelligence.

[169]  Jorge Cadima,et al.  Principal component analysis: a review and recent developments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[170]  Jaak Vilo,et al.  ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap , 2015, Nucleic Acids Res..

[171]  Quoc-Viet Dang Implementing an individualized recommendation system using latent semantic analysis , 2018 .

[172]  Tat-Jun Chin,et al.  Incremental Kernel Principal Component Analysis , 2007, IEEE Transactions on Image Processing.

[173]  Frank-Michael Schleif,et al.  Learning vector quantization for (dis-)similarities , 2014, Neurocomputing.

[174]  Haesun Park,et al.  A comparison of generalized linear discriminant analysis algorithms , 2008, Pattern Recognit..

[175]  Alexander Agung Santoso Gunawan,et al.  AUTOMATIC ARRHYTHMIAS DETECTION USING VARIOUS TYPES OF ARTIFICIAL NEURAL NETWORK BASED LEARNING VECTOR QUANTIZATION (LVQ) , 2014 .

[176]  Thomas Hofmann,et al.  Unsupervised Learning by Probabilistic Latent Semantic Analysis , 2004, Machine Learning.

[177]  Timo Hämäläinen,et al.  Online anomaly detection using dimensionality reduction techniques for HTTP log analysis , 2015, Comput. Networks.

[178]  Luo Si,et al.  Adjusting Mixture Weights of Gaussian Mixture Model via Regularized Probabilistic Latent Semantic Analysis , 2005, PAKDD.

[179]  Bruno Siciliano,et al.  A Reinforcement Learning Method Using Multifunctional Principal Component Analysis for Human-Like Grasping , 2021, IEEE Transactions on Cognitive and Developmental Systems.

[180]  Han-Wei Hsiao,et al.  Incorporating self-organizing map with text mining techniques for text hierarchy generation , 2015, Appl. Soft Comput..

[181]  Amr M. Youssef,et al.  Incremental Hessian Locally Linear Embedding algorithm , 2007, 2007 9th International Symposium on Signal Processing and Its Applications.

[182]  Sven Serneels,et al.  Principal component analysis for data containing outliers and missing elements , 2008, Comput. Stat. Data Anal..

[183]  David Degras,et al.  Online Principal Component Analysis in High Dimension: Which Algorithm to Choose? , 2015, ArXiv.

[184]  Guowei Yang,et al.  Sparse two-dimensional discriminant locality-preserving projection (S2DDLPP) for feature extraction , 2019, Soft Comput..

[185]  Chunlei Xia,et al.  Implementation of Fractal Dimension and Self-Organizing Map to Detect Toxic Effects of Toluene on Movement Tracks of Daphnia magna , 2018, Journal of toxicology.

[186]  Alain Berro,et al.  Genetic algorithms and particle swarm optimization for exploratory projection pursuit , 2010, Annals of Mathematics and Artificial Intelligence.

[187]  Danielle J. Navarro,et al.  Do Additional Features Help or Hurt Category Learning? The Curse of Dimensionality in Human Learners , 2018, Cogn. Sci..

[188]  Jamileh Yousefi,et al.  Characterizing EMG data using machine-learning tools , 2014, Comput. Biol. Medicine.

[189]  F. Prieto,et al.  Cluster Identification Using Projections , 2001 .

[190]  G. Strang Introduction to Linear Algebra , 1993 .

[191]  Nasir Saeed,et al.  A Survey on Multidimensional Scaling , 2018, ACM Comput. Surv..

[192]  Nathan Intrator,et al.  Combining Exploratory Projection Pursuit and Projection Pursuit Regression with Application to Neural Networks , 1993, Neural Computation.

[193]  Yun Tang,et al.  A study of using locality preserving projections for feature extraction in speech recognition , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[194]  Christian Posse,et al.  Projection Pursuit Indices Based on the Empirical Distribution Function , 2005 .

[195]  Jing Wang,et al.  MLLE: Modified Locally Linear Embedding Using Multiple Weights , 2006, NIPS.

[196]  David Filliat,et al.  State Representation Learning for Control: An Overview , 2018, Neural Networks.

[197]  Jeng-Shyang Pan,et al.  Kernel Self-optimized Locality Preserving Discriminant Analysis for feature extraction and recognition , 2011, Neurocomputing.

[198]  Elena Gorbacheva,et al.  Towards a typology of business process management professionals: identifying patterns of competences through latent semantic analysis , 2016, Enterp. Inf. Syst..

[199]  Gang Yang,et al.  A Sparse and Low-Rank Near-Isometric Linear Embedding Method for Feature Extraction in Hyperspectral Imagery Classification , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[200]  Teuvo Kohonen,et al.  Essentials of the self-organizing map , 2013, Neural Networks.

[201]  Michel Verleysen,et al.  Nonlinear Dimensionality Reduction , 2021, Computer Vision.

[202]  Gene H. Golub,et al.  Singular value decomposition and least squares solutions , 1970, Milestones in Matrix Computation.

[203]  J. Friedman,et al.  Projection Pursuit Regression , 1981 .

[204]  C. Loan Generalizing the Singular Value Decomposition , 1976 .

[205]  Hamid Behnam,et al.  Automatic Computation of Left Ventricular Volume Changes Over a Cardiac Cycle from Echocardiography Images by Nonlinear Dimensionality Reduction , 2015, Journal of Digital Imaging.

[206]  Bernard C. Jiang,et al.  Singular Value Decomposition Based Feature Extraction Technique for Physiological Signal Analysis , 2010, Journal of Medical Systems.

[207]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[208]  Neil Davey,et al.  Analysis of linear and nonlinear dimensionality reduction methods for gender classification of face images , 2005, Int. J. Syst. Sci..

[209]  Samuel Kaski,et al.  Self organization of a massive document collection , 2000, IEEE Trans. Neural Networks Learn. Syst..

[210]  Reinhard Laubenbacher,et al.  Comparative Analysis of Linear and Nonlinear Dimension Reduction Techniques on Mass Cytometry Data , 2018, bioRxiv.

[211]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[212]  Hui Wang,et al.  Separability-Oriented Subclass Discriminant Analysis , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[213]  Karel Jezek,et al.  Text Summarization and Singular Value Decomposition , 2004, ADVIS.

[214]  Geoffrey E. Hinton,et al.  Stochastic Neighbor Embedding , 2002, NIPS.

[215]  Philippe Garat,et al.  Blind separation of mixture of independent sources through a quasi-maximum likelihood approach , 1997, IEEE Trans. Signal Process..

[216]  Thea Radüntz,et al.  Automated EEG artifact elimination by applying machine learning algorithms to ICA-based features , 2017, Journal of neural engineering.

[217]  Wen-Lian Hsu,et al.  Leveraging manifold learning for extractive broadcast news summarization , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[218]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[219]  Umesh D. Dixit,et al.  Logo based document image retrieval using singular value decomposition features , 2016, 2016 International Conference on Signal and Information Processing (IConSIP).

[220]  Yan Gu,et al.  Study of classification model for college students' M-learning strategies based on PCA-LVQ neural network , 2015, 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI).

[221]  ChengXiang Zhai,et al.  A Tutorial on Probabilistic Topic Models for Text Data Retrieval and Analysis , 2018, SIGIR.

[222]  Balasubramanian Narasimhan,et al.  Imputation of Mixed Data With Multilevel Singular Value Decomposition , 2018, Journal of Computational and Graphical Statistics.

[223]  A. Buja,et al.  Local Multidimensional Scaling for Nonlinear Dimension Reduction, Graph Drawing, and Proximity Analysis , 2009 .