A multi-instrument non-parametric reconstruction of the electron pressure profile in the galaxy cluster CLJ1226.9+3332

Context. In the past decade, sensitive, resolved Sunyaev-Zel’dovich (SZ) studies of galaxy clusters have become common. Whereas many previous SZ studies have parameterized the pressure profiles of galaxy clusters, non-parametric reconstructions will provide insights into the thermodynamic state of the intracluster medium.Aim. We seek to recover the non-parametric pressure profiles of the high redshift (z = 0.89) galaxy cluster CLJ 1226.9+3332 as inferred from SZ data from the MUSTANG, NIKA, Bolocam, and Planck instruments, which all probe different angular scales.Methods. Our non-parametric algorithm makes use of logarithmic interpolation, which under the assumption of ellipsoidal symmetry is analytically integrable. For MUSTANG, NIKA, and Bolocam we derive a non-parametric pressure profile independently and find good agreement among the instruments. In particular, we find that the non-parametric profiles are consistent with a fitted generalized Navaro-Frenk-White (gNFW) profile. Given the ability of Planck to constrain the total signal, we include a prior on the integrated Compton Y parameter as determined by Planck.Results. For a given instrument, constraints on the pressure profile diminish rapidly beyond the field of view. The overlap in spatial scales probed by these four datasets is therefore critical in checking for consistency between instruments. By using multiple instruments, our analysis of CLJ 1226.9+3332 covers a large radial range, from the central regions to the cluster outskirts: 0.05 R500 < r < 1.1 R500. This is a wider range of spatial scales than is typically recovered by SZ instruments. Similar analyses will be possible with the new generation of SZ instruments such as NIKA2 and MUSTANG2.Key words: galaxies: clusters: individual: CLJ 1226.9+3332

[1]  Y. Suto,et al.  The Sunyaev–Zel'dovich effect at 5″: RX J1347.5−1145 imaged by ALMA , 2016, 1607.08833.

[2]  P. Ade,et al.  Non-parametric deprojection of NIKA SZ observations: Pressure distribution in the Planck-discovered cluster PSZ1 G045.85+57.71 , 2016, 1607.07679.

[3]  J. Merten,et al.  A COMPARISON AND JOINT ANALYSIS OF SUNYAEV–ZEL’DOVICH EFFECT MEASUREMENTS FROM PLANCK AND BOLOCAM FOR A SET OF 47 MASSIVE GALAXY CLUSTERS , 2016, 1605.03541.

[4]  F. Feroz,et al.  AMI observations of 10 CLASH galaxy clusters: SZ and X-ray data used together to determine cluster dynamical states , 2016, Monthly Notices of the Royal Astronomical Society.

[5]  M. Gaspari,et al.  Thermal SZ fluctuations in the ICM: probing turbulence and thermodynamics in Coma cluster with Planck , 2016, 1604.03106.

[6]  J. E. Ruhl,et al.  COSMOLOGICAL CONSTRAINTS FROM GALAXY CLUSTERS IN THE 2500 SQUARE-DEGREE SPT-SZ SURVEY , 2016, 1603.06522.

[7]  R. B. Barreiro,et al.  Planck 2015 results - XXII. A map of the thermal Sunyaev-Zeldovich effect , 2015, 1502.01596.

[8]  P. Ade,et al.  High angular resolution Sunyaev-Zel’dovich observations of MACS J1423.8+2404 with NIKA: Multiwavelength analysis , 2015, 1510.06674.

[9]  N. Ponthieu,et al.  The NIKA2 Instrument, A Dual-Band Kilopixel KID Array for Millimetric Astronomy , 2015, 1601.02774.

[10]  M. Donahue,et al.  Galaxy Cluster Pressure Profiles as Determined by Sunyaev Zel’dovich Effect Observations with MUSTANG and Bolocam. II. Joint Analysis of 14 Clusters , 2015, 1608.03980.

[11]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[12]  G. W. Pratt,et al.  XXIV. Cosmology from Sunyaev-Zeldovich cluster counts , 2015, 1502.01597.

[13]  N. Czakon,et al.  GALAXY CLUSTER PRESSURE PROFILES, AS DETERMINED BY SUNYAEV-ZELDOVICH EFFECT OBSERVATIONS WITH MUSTANG AND BOLOCAM. I. JOINT ANALYSIS TECHNIQUE , 2014, 1501.00187.

[14]  P. Ade,et al.  Pressure distribution of the high-redshift cluster of galaxies CL J1226.9+3332 with NIKA ? , 2014, 1410.2808.

[15]  L. Moustakas,et al.  GALAXY CLUSTER SCALING RELATIONS BETWEEN BOLOCAM SUNYAEV–ZEL’DOVICH EFFECT AND CHANDRA X-RAY MEASUREMENTS , 2014, 1406.2800.

[16]  M. Lueker,et al.  THE REDSHIFT EVOLUTION OF THE MEAN TEMPERATURE, PRESSURE, AND ENTROPY PROFILES IN 80 SPT-SELECTED GALAXY CLUSTERS , 2014, 1404.6250.

[17]  P. Ade,et al.  Performance and calibration of the NIKA camera at the IRAM 30 m telescope , 2014, 1402.0260.

[18]  N. Ponthieu,et al.  First observation of the thermal Sunyaev-Zel’dovich effect with kinetic inductance detectors , 2013, 1310.6237.

[19]  G. W. Pratt,et al.  Planck2013 results. XXIX. ThePlanckcatalogue of Sunyaev-Zeldovich sources , 2013, Astronomy &amp; Astrophysics.

[20]  N. Ponthieu,et al.  Latest NIKA Results and the NIKA-2 Project , 2013, 1310.1230.

[21]  David N. Spergel,et al.  The Atacama Cosmology Telescope: Sunyaev-Zel'dovich selected galaxy clusters at 148 GHz from three seasons of data , 2013, 1301.0816.

[22]  Elena Pierpaoli,et al.  SUNYAEV–ZEL'DOVICH-MEASURED PRESSURE PROFILES FROM THE BOLOCAM X-RAY/SZ GALAXY CLUSTER SAMPLE , 2012, 1211.1632.

[23]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[24]  Stefano Borgani,et al.  Formation of Galaxy Clusters , 2012, 1205.5556.

[25]  Amber D. Miller,et al.  Comparison of pressure profiles of massive relaxed galaxy clusters using the Sunyaev–Zel'dovich and x-ray data , 2011, 1112.1599.

[26]  J. R. Bond,et al.  ON THE CLUSTER PHYSICS OF SUNYAEV–ZEL'DOVICH AND X-RAY SURVEYS. II. DECONSTRUCTING THE THERMAL SZ POWER SPECTRUM , 2011, 1109.3711.

[27]  Edward J. Wollack,et al.  THE ATACAMA COSMOLOGY TELESCOPE: ACT-CL J0102−4915 “EL GORDO,” A MASSIVE MERGING CLUSTER AT REDSHIFT 0.87 , 2011, 1109.0953.

[28]  T. Mroczkowski A NEW APPROACH TO OBTAINING CLUSTER MASS FROM SUNYAEV–ZEL'DOVICH EFFECT OBSERVATIONS , 2011, 1101.2176.

[29]  S. R. Dicker,et al.  MUSTANG HIGH ANGULAR RESOLUTION SUNYAEV–ZEL'DOVICH EFFECT IMAGING OF SUBSTRUCTURE IN FOUR GALAXY CLUSTERS , 2010, 1010.5494.

[30]  Elena Pierpaoli,et al.  CLUSTER MORPHOLOGIES AND MODEL-INDEPENDENT YSZ ESTIMATES FROM BOLOCAM SUNYAEV–ZEL'DOVICH IMAGES , 2010, 1010.1798.

[31]  S. R. Hildebrandt,et al.  MILCA, a modified internal linear combination algorithm to extract astrophysical emissions from multifrequency sky maps , 2010, 1007.1149.

[32]  J. J. A. Baselmans,et al.  NIKA: A millimeter-wave kinetic inductance camera , 2010, 1004.2209.

[33]  A. Lee,et al.  Non-parametric modeling of the intra-cluster gas using APEX-SZ bolometer imaging data , 2009, 0911.3905.

[34]  M. Bonamente,et al.  AN ANALYTIC MODEL OF THE PHYSICAL PROPERTIES OF GALAXY CLUSTERS , 2009, 0911.2827.

[35]  G. W. Pratt,et al.  The universal galaxy cluster pressure profile from a representative sample of nearby systems (REXCESS) and the Y-SZ-M-500 relation , 2009, 0910.1234.

[36]  K. Irwin,et al.  IMPLICATIONS OF A HIGH ANGULAR RESOLUTION IMAGE OF THE SUNYAEV–ZEL'DOVICH EFFECT IN RXJ1347−1145 , 2009, 0910.5025.

[37]  Hawaii,et al.  The Observed Growth of Massive Galaxy Clusters II: X-ray Scaling Relations , 2009, 0909.3099.

[38]  Megan Donahue,et al.  INTRACLUSTER MEDIUM ENTROPY PROFILES FOR A CHANDRA ARCHIVAL SAMPLE OF GALAXY CLUSTERS , 2009, 0902.1802.

[39]  J. Tyson,et al.  DARK MATTER IN THE GALAXY CLUSTER CL J1226+3332 AT z = 0.89 , 2008, 0810.0709.

[40]  J. Carlstrom,et al.  APPLICATION OF A SELF-SIMILAR PRESSURE PROFILE TO SUNYAEV–ZEL'DOVICH EFFECT DATA FROM GALAXY CLUSTERS , 2008, 0809.5077.

[41]  D. Nagai,et al.  Effects of Galaxy Formation on Thermodynamics of the Intracluster Medium , 2007, astro-ph/0703661.

[42]  Amber D. Miller,et al.  Observations of High-Redshift X-Ray Selected Clusters with the Sunyaev-Zel’dovich Array , 2006, astro-ph/0610115.

[43]  C. Jones,et al.  Deep XMM-Newton and Chandra Observations of Cl J1226.9+3332: A Detailed X-Ray Mass Analysis of a z = 0.89 Galaxy Cluster , 2006, astro-ph/0609690.

[44]  M. Arnaud,et al.  An improved deprojection and PSF-deconvolution technique for galaxy-cluster X-ray surface-brightness profiles , 2006, astro-ph/0608700.

[45]  C. Jones,et al.  Deep XMM and Chandra observations of ClJ1226.9+3332: A detailed X-ray mass analysis of a z=0.89 galaxy cluster. , 2006 .

[46]  K. Dawson,et al.  Determination of the Cosmic Distance Scale from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-Redshift Galaxy Clusters , 2005, astro-ph/0512349.

[47]  Institute for Astronomy,et al.  An XMM-Newton observation of the massive, relaxed galaxy cluster ClJ1226.9+3332 at z=0.89 , 2004, astro-ph/0403521.

[48]  Padova,et al.  X‐ray properties of galaxy clusters and groups from a cosmological hydrodynamical simulation , 2003, astro-ph/0310794.

[49]  B. Robertson,et al.  A High-Resolution Study of the Hydra A Cluster with Chandra: Comparison of the Core Mass Distribution with Theoretical Predictions and Evidence for Feedback in the Cooling Flow , 2000, astro-ph/0010224.

[50]  K. Dawson,et al.  Sunyaev-Zeldovich Effect Imaging of Massive Clusters of Galaxies at Redshift z > 0.8 , 2000, astro-ph/0012052.

[51]  A. Edge,et al.  MACS: A Quest for the Most Massive Galaxy Clusters in the Universe , 2000, astro-ph/0009101.

[52]  M. Markevitch,et al.  Chandra Estimate of the Magnetic Field Strength near the Cold Front in A3667 , 2000, astro-ph/0008499.

[53]  James J. Bock,et al.  Bolocam: a millimeter-wave bolometric camera , 1998, Astronomical Telescopes and Instrumentation.

[54]  S. Nozawa,et al.  Relativistic Corrections to the Sunyaev-Zeldovich Effect for Clusters of Galaxies. IV. Analytic Fitting Formula for the Numerical Results , 1999, astro-ph/9912008.

[55]  Nick Kaiser,et al.  Evolution and clustering of rich clusters , 1986 .

[56]  G. Kriss,et al.  The X-ray emitting gas in poor clusters with central dominant galaxies , 1983 .

[57]  William H. Press,et al.  Formation of Galaxies and Clusters of Galaxies by Self-Similar Gravitational Condensation , 1974 .