Deep unsupervised network for multimodal perception, representation and classification

[1]  M. Cugmas,et al.  On comparing partitions , 2015 .

[2]  Pierre-Yves Oudeyer,et al.  Object Learning Through Active Exploration , 2014, IEEE Transactions on Autonomous Mental Development.

[3]  Igor Farkas,et al.  A Multimodal Connectionist Architecture for Unsupervised Grounding of Spatial Language , 2013, Cognitive Computation.

[4]  Giorgio Metta,et al.  On the impact of learning hierarchical representations for visual recognition in robotics , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Giulio Sandini,et al.  The iCub Platform: A Tool for Studying Intrinsically Motivated Learning , 2013, Intrinsically Motivated Learning in Natural and Artificial Systems.

[6]  Olivier Mangin,et al.  Learning semantic components from subsymbolic multimodal perception , 2013, 2013 IEEE Third Joint International Conference on Development and Learning and Epigenetic Robotics (ICDL).

[7]  Peter Ford Dominey,et al.  Multi-modal convergence maps: from body schema and self-representation to mental imagery , 2013, Adapt. Behav..

[8]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[9]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Benjamin Schrauwen,et al.  Training and Analysing Deep Recurrent Neural Networks , 2013, NIPS.

[11]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[12]  Tapani Raiko,et al.  Learning Deep Belief Networks from Non-stationary Streams , 2012, ICANN.

[13]  David Filliat,et al.  Developmental approach for interactive object discovery , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[14]  Luca Maria Gambardella,et al.  Deep Big Multilayer Perceptrons for Digit Recognition , 2012, Neural Networks: Tricks of the Trade.

[15]  Giulio Sandini,et al.  Computing robot internal/external wrenches by means of inertial, tactile and F/T sensors: Theory and implementation on the iCub , 2011, 2011 11th IEEE-RAS International Conference on Humanoid Robots.

[16]  Pascal Vincent,et al.  The Manifold Tangent Classifier , 2011, NIPS.

[17]  Joshua B. Tenenbaum,et al.  Learning to Learn with Compound HD Models , 2011, NIPS.

[18]  Yoshua Bengio,et al.  Shallow vs. Deep Sum-Product Networks , 2011, NIPS.

[19]  Jeffrey Pennington,et al.  Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection , 2011, NIPS.

[20]  Ke Chen,et al.  Exploring speaker-specific characteristics with deep learning , 2011, The 2011 International Joint Conference on Neural Networks.

[21]  Jürgen Schmidhuber,et al.  Modular deep belief networks that do not forget , 2011, The 2011 International Joint Conference on Neural Networks.

[22]  Pascal Vincent,et al.  Higher Order Contractive Auto-Encoder , 2011, ECML/PKDD.

[23]  Pierre-Yves Oudeyer,et al.  The interaction of maturational constraints and intrinsic motivations in active motor development , 2011, 2011 IEEE International Conference on Development and Learning (ICDL).

[24]  Pedro M. Domingos,et al.  Sum-product networks: A new deep architecture , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[25]  Pascal Vincent,et al.  Contractive Auto-Encoders: Explicit Invariance During Feature Extraction , 2011, ICML.

[26]  Juhan Nam,et al.  Multimodal Deep Learning , 2011, ICML.

[27]  Tomoaki Nakamura,et al.  Bag of multimodal LDA models for concept formation , 2011, 2011 IEEE International Conference on Robotics and Automation.

[28]  Angelo Cangelosi,et al.  Integration of Speech and Action in Humanoid Robots: iCub Simulation Experiments , 2011, IEEE Transactions on Autonomous Mental Development.

[29]  Geoffrey E. Hinton,et al.  Two Distributed-State Models For Generating High-Dimensional Time Series , 2011, J. Mach. Learn. Res..

[30]  Bruce A. Draper,et al.  Introduction to the Bag of Features Paradigm for Image Classification and Retrieval , 2011, ArXiv.

[31]  Moritz Tenorth,et al.  RoboEarth - A World Wide Web for Robots , 2011, ICRA 2011.

[32]  Geoffrey E. Hinton,et al.  Gated Softmax Classification , 2010, NIPS.

[33]  Hariharan Narayanan,et al.  Sample Complexity of Testing the Manifold Hypothesis , 2010, NIPS.

[34]  Angelo Cangelosi,et al.  Epigenetic Robotics Architecture (ERA) , 2010, IEEE Transactions on Autonomous Mental Development.

[35]  Michael Beetz,et al.  ORO, a knowledge management platform for cognitive architectures in robotics , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[36]  Yann LeCun,et al.  Convolutional networks and applications in vision , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[37]  André Stuhlsatz,et al.  Discriminative feature extraction with Deep Neural Networks , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[38]  Mathieu Lefort,et al.  Self-organization of neural maps using a modulated BCM rule within a multimodal architecture , 2010, BICS 2010.

[39]  James Martens,et al.  Deep learning via Hessian-free optimization , 2010, ICML.

[40]  Geoffrey E. Hinton,et al.  Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines , 2010, Neural Computation.

[41]  Danijel Skocaj,et al.  Self-supervised cross-modal online learning of basic object affordances for developmental robotic systems , 2010, 2010 IEEE International Conference on Robotics and Automation.

[42]  Yoshua Bengio,et al.  Understanding the difficulty of training deep feedforward neural networks , 2010, AISTATS.

[43]  Linda B. Smith,et al.  Thinking With Your Body: Modelling Spatial Biases in Categorization Using a Real Humanoid Robot , 2010 .

[44]  Robert L. Goldstone,et al.  Categorical perception. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[45]  Christian Balkenius,et al.  Associative Self-organizing Map , 2009, IJCCI.

[46]  Tomoaki Nakamura,et al.  Grounding of word meanings in multimodal concepts using LDA , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[47]  Wolfram Burgard,et al.  Object identification with tactile sensors using bag-of-features , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  A. Damasio,et al.  Convergence and divergence in a neural architecture for recognition and memory , 2009, Trends in Neurosciences.

[49]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[50]  Pascal Vincent,et al.  The Difficulty of Training Deep Architectures and the Effect of Unsupervised Pre-Training , 2009, AISTATS.

[51]  Emre Ugur,et al.  Affordance learning from range data for multi-step planning , 2009, EpiRob.

[52]  Yoshua Bengio,et al.  Extracting and composing robust features with denoising autoencoders , 2008, ICML '08.

[53]  Manuel Lopes,et al.  Learning Object Affordances: From Sensory--Motor Coordination to Imitation , 2008, IEEE Transactions on Robotics.

[54]  Yoshua. Bengio,et al.  Learning Deep Architectures for AI , 2007, Found. Trends Mach. Learn..

[55]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[56]  Haitao Zhao,et al.  A novel incremental principal component analysis and its application for face recognition , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[57]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[58]  Anil K. Jain,et al.  Incremental nonlinear dimensionality reduction by manifold learning , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Andrew P. Paplinski,et al.  Multimodal FeedForward Self-organizing Maps , 2005, CIS.

[60]  Matti Pietikäinen,et al.  Incremental locally linear embedding , 2005, Pattern Recognit..

[61]  Michael Gasser,et al.  The Development of Embodied Cognition: Six Lessons from Babies , 2005, Artificial Life.

[62]  Lawrence Cayton,et al.  Algorithms for manifold learning , 2005 .

[63]  Chen Yu,et al.  On the Integration of Grounding Language and Learning Objects , 2004, AAAI.

[64]  Stefan Wermter,et al.  Towards multimodal neural robot learning , 2004, Robotics Auton. Syst..

[65]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[66]  D. Sagi,et al.  Top-Down Modulation of Lateral Interactions in Early Vision Does Attention Affect Integration of the Whole or Just Perception of the Parts? , 2003, Current Biology.

[67]  Lynn V. Richards,et al.  On the foundations of perceptial symbol systems: Specifying embodied representations via connectionism , 2003 .

[68]  H. Kennedy,et al.  Anatomical Evidence of Multimodal Integration in Primate Striate Cortex , 2002, The Journal of Neuroscience.

[69]  J. Pernier,et al.  Early auditory-visual interactions in human cortex during nonredundant target identification. , 2002, Brain research. Cognitive brain research.

[70]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[71]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[72]  M. Giard,et al.  Auditory-Visual Integration during Multimodal Object Recognition in Humans: A Behavioral and Electrophysiological Study , 1999, Journal of Cognitive Neuroscience.

[73]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[74]  L. Barsalou,et al.  Whither structured representation? , 1999, Behavioral and Brain Sciences.

[75]  R. French Catastrophic forgetting in connectionist networks , 1999, Trends in Cognitive Sciences.

[76]  Jonathan D. Cohen,et al.  Rubber hands ‘feel’ touch that eyes see , 1998, Nature.

[77]  Robert L. Goldstone,et al.  Reuniting perception and conception , 1998, Cognition.

[78]  V. D. de Sa Category learning through multimodality sensing. , 1998, Neural computation.

[79]  David J. Field,et al.  Sparse coding with an overcomplete basis set: A strategy employed by V1? , 1997, Vision Research.

[80]  L. Barsalou,et al.  Mundane creativity in perceptual symbol systems , 1997 .

[81]  Robert L. Goldstone,et al.  Perceptual Learning from Cross-modal Feedback , 1997 .

[82]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[83]  A. Damasio Category-related recognition defects as a clue to the neural substrates of knowledge , 1990, Trends in Neurosciences.

[84]  A. Damasio Time-locked multiregional retroactivation: A systems-level proposal for the neural substrates of recall and recognition , 1989, Cognition.

[85]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[86]  Antonio R. Damasio,et al.  The Brain Binds Entities and Events by Multiregional Activation from Convergence Zones , 1989, Neural Computation.

[87]  H. McGurk,et al.  Hearing lips and seeing voices , 1976, Nature.

[88]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[89]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .