Identifiabilities and nonlinearities

A parametric model structure is (globally) identifiable if the parameter vector associated with a given input-output behavior is unique. If this is not the case, careless estimation of this vector from experimental data may lead to completely erroneous results. (The situation is similar when unobserved state variables have to be estimated from the outputs.) The effect of two types of nonlinearity of the output (with respect to the parameters and to the inputs) on structural identifiability is described. Various methods to test state space models for identifiability are presented. They apply to models that are nonlinear with respect to the parameters and may be linear or not with respect to the inputs. Their use is illustrated on simple examples and an actual problem in chemical engineering. Advantages and limitations of the existing techniques are evidenced. Relationships between structural identifiability and practical identifiability, i.e. the ability to actually estimate the parameters of the model from experimental data, are considered, as well as techniques available to design an experiment so as to make the parameters of interest as identifiable as possible.

[1]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[2]  K. Glover,et al.  Identifiability of linear and nonlinear dynamical systems , 1976 .

[3]  F. Ollivier Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .

[4]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[5]  Eric Walter,et al.  Estimation of non-uniquely identifiable parameters via exhaustive modeling and membership set theory , 1986 .

[6]  Eric Walter,et al.  QUALITATIVE AND QUANTITATIVE IDENTIFIABILITY ANALYSIS OF NONLINEAR CHEMICAL KINETIC MODELS , 1989 .

[7]  Lennart Ljung,et al.  PARAMETRIZATION OF NONLINEAR MODEL STRUCTURES AS LINEAR REGRESSIONS , 1990 .

[8]  Eric Walter,et al.  Identifiability of parametric models , 1987 .

[9]  H. Rabitz,et al.  Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.

[10]  Franklin M. Fisher,et al.  The identification problem in econometrics , 1967 .

[11]  Charles DeLisi,et al.  Mathematics and Computers in Biomedical Applications , 1985 .

[12]  R. Bellman,et al.  On structural identifiability , 1970 .

[13]  Eric Walter,et al.  Qualitative and quantitative experiment design for phenomenological models - A survey , 1990, Autom..

[14]  Sette Diop Théorie de l'élimination et principe du modèle interne en automatique , 1989 .

[15]  Claudio Cobelli,et al.  Identifiability results on some constrained compartmental systems , 1979 .

[16]  Lennart Ljung,et al.  On global identifiability for arbitrary model parametrizations , 1994, Autom..

[17]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[18]  Jon G. Rokne,et al.  New computer methods for global optimization , 1988 .

[19]  M. Fliess Automatique et corps différentiels , 1989 .

[20]  R. Horst,et al.  Global Optimization: Deterministic Approaches , 1992 .

[21]  Peter D. H. Hill,et al.  A Review of Experimental Design Procedures for Regression Model Discrimination , 1978 .

[22]  H. Rabitz,et al.  State isomorphism approach to global identifiability of nonlinear systems , 1989 .

[23]  Y. Lecourtier,et al.  THE TESTING OF STRUCTURAL PROPERTIES THROUGH SYMBOLIC COMPUTATION , 1987 .

[24]  R. Schoenfeld,et al.  Invariants in Experimental Data on Linear Kinetics and the Formulation of Models , 1956 .

[25]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[26]  B. Buchberger Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems , 1970 .

[27]  D. M. Titterington,et al.  Aspects of Optimal Design in Dynamic Systems , 1980 .

[28]  K R Godfrey,et al.  Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. , 1990, Mathematical biosciences.

[29]  David H. Anderson Compartmental Modeling and Tracer Kinetics , 1983 .

[30]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .

[31]  W. G. Hunter,et al.  Experimental Design: Review and Comment , 1984 .

[32]  M. Fliess,et al.  Fonctionnelles causales non linaires et indtermines non commutatives , 1981 .

[33]  Yves Lecourtier,et al.  VOLTERRA AND GENERATING POWER SERIES APPROACHES TO IDENTIFIABILITY TESTING , 1987 .

[34]  S. Audoly,et al.  On the identifiability of linear compartmental systems: a revisited transfer function approach based on topological properties , 1983 .

[35]  Eric Walter,et al.  Identifiability of State Space Models , 1982 .

[36]  T. Tarn,et al.  New results for identifiability of nonlinear systems , 1987 .

[37]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[38]  J. P. Norton,et al.  An Introduction to Identification , 1986 .

[39]  J. Willems,et al.  Parametrizations of linear dynamical systems: Canonical forms and identifiability , 1974 .

[40]  I. W. Saunders,et al.  A model for myxomatosis. , 1980 .

[41]  Martin B. Zarrop,et al.  Optimal experiment design for dynamic system identification , 1977 .

[42]  Yves Lecourtier,et al.  Unidentifiable compartmental models: what to do? , 1981 .

[43]  Claudio Cobelli,et al.  Identifiability of compartmental systems and related structural properties , 1979 .

[44]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[45]  E. Walter,et al.  Global approaches to identifiability testing for linear and nonlinear state space models , 1982 .

[46]  Eric Walter,et al.  On the structural output distinguishability of parametric models, and its relations with structural identifiability , 1984 .