Descriptor Systems: A General Mathematical Framework for Modelling, Simulation and Control (Deskriptorsysteme: Ein allgemeines mathematisches Konzept für Modellierung, Simulation und Regelung)

Summary Descriptor systems present a general mathematical framework for the modelling, simulation and control of complex dynamical systems arising in many areas of mechanical, electrical and chemical engineering. This paper presents a survey of the current theory of descriptor systems, concerning solvability, stability, model reduction, controllability, observability and optimal control.

[1]  T. Katayama,et al.  A generalized Lyapunov theorem for descriptor system , 1995 .

[2]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[3]  D. Cobb Controllability, observability, and duality in singular systems , 1984 .

[4]  Stephen L. Campbell,et al.  A general form for solvable linear time varying singular systems of differential equations , 1987 .

[5]  Zhaojun Bai,et al.  A partial Padé-via-Lanczos method for reduced-order modeling , 2001 .

[6]  D. Hinrichsen,et al.  Stability radii of linear systems , 1986 .

[7]  Axel Ruhe Rational Krylov sequence methods for eigenvalue computation , 1984 .

[8]  Volker Mehrmann,et al.  A New Software Package for Linear Differential-Algebraic Equations , 1997, SIAM J. Sci. Comput..

[9]  R. Freund Krylov-subspace methods for reduced-order modeling in circuit simulation , 2000 .

[10]  Volker Mehrmann,et al.  Where is the nearest non-regular pencil? , 1998 .

[11]  B. Shafai,et al.  Balanced realization and model reduction of singular systems , 1994 .

[12]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[13]  R. Byers A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices , 1988 .

[14]  Caren Tischendorf On the stability of solutions of autonomous index-I tractable and quasilinear index-2 tractable DAEs , 1994 .

[15]  P. Dooren,et al.  Asymptotic Waveform Evaluation via a Lanczos Method , 1994 .

[16]  Roswitha März,et al.  Criteria for the Trivial Solution of Differential Algebraic Equations with Small Nonlinearities to be Asymptotically Stable , 1998 .

[17]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[18]  F. Lewis A survey of linear singular systems , 1986 .

[19]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[20]  G. Alistair Watson,et al.  An Algorithm for Computing the Distance to Instability , 1998, SIAM J. Matrix Anal. Appl..

[21]  C. W. Gear,et al.  Automatic integration of Euler-Lagrange equations with constraints , 1985 .

[22]  Edward J. Davison,et al.  A formula for computation of the real stability radius , 1995, Autom..

[23]  Nancy Nichols,et al.  On the stability radius of a generalized state-space system , 1993 .

[24]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[25]  Jacob K. White,et al.  Low Rank Solution of Lyapunov Equations , 2002, SIAM J. Matrix Anal. Appl..

[26]  Edward J. Davison,et al.  The stability robustness of generalized eigenvalues , 1992 .

[27]  Michael Valášek,et al.  Optimal control of causal differential–algebraic systems , 2002 .

[28]  R. F. Sincovec,et al.  Solvability, controllability, and observability of continuous descriptor systems , 1981 .

[29]  Volker Mehrmann,et al.  A Behavioral Approach to Time-Varying Linear Systems. Part 2: Descriptor Systems , 2005, SIAM J. Control. Optim..

[30]  A. Bunse-Gerstner,et al.  Feedback design for regularizing descriptor systems , 1999 .

[31]  Roland W. Freund,et al.  Efficient linear circuit analysis by Pade´ approximation via the Lanczos process , 1994, EURO-DAC '94.

[32]  João Yoshiyuki Ishihara,et al.  On the Lyapunov theorem for singular systems , 2002, IEEE Trans. Autom. Control..

[33]  Paul Van Dooren,et al.  A rational Lanczos algorithm for model reduction , 1996, Numerical Algorithms.

[34]  Brian D. O. Anderson,et al.  Rational interpolation and state-variable realizations , 1990 .

[35]  R. März The index of linear differential algebraic equations with properly stated leading terms , 2002 .

[36]  V. Mehrmann,et al.  Index reduction for differential‐algebraic equations by minimal extension , 2004 .

[37]  Sven Erik Mattsson,et al.  Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives , 1993, SIAM J. Sci. Comput..

[38]  S. Godunov Problem of the dichotomy of the spectrum of a matrix , 1986 .

[39]  Tatjana Stykel,et al.  Gramian-Based Model Reduction for Descriptor Systems , 2004, Math. Control. Signals Syst..

[40]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .