Ant Colony Optimization and Constraint Programming

Ant colony optimization is a metaheuristic which has been successfully applied to a wide range of combinatorial optimization problems. The author describes this metaheuristic and studies its efficiency for solving some hard combinatorial problems, with a specific focus on constraint programming. The text is organized into three parts. The first part introduces constraint programming, which provides high level features to declaratively model problems by means of constraints. It describes the main existing approaches for solving constraint satisfaction problems, including complete tree search approaches and metaheuristics, and shows how they can be integrated within constraint programming languages. The second part describes the ant colony optimization metaheuristic and illustrates its capabilities on different constraint satisfaction problems. The third part shows how the ant colony may be integrated within a constraint programming language, thus combining the expressive power of constraint programming languages, to describe problems in a declarative way, and the solving power of ant colony optimization to efficiently solve these problems.

[1]  Thomas Schiex,et al.  Valued Constraint Satisfaction Problems: Hard and Easy Problems , 1995, IJCAI.

[2]  T. Hogg Exploiting Problem Structure as a Search Heuristic , 1998 .

[3]  Christian Bessiere,et al.  Domain Filtering Consistencies , 2011, J. Artif. Intell. Res..

[4]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[5]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[6]  Pascal Van Hentenryck,et al.  Solving the Car-Sequencing Problem in Constraint Logic Programming , 1988, ECAI.

[7]  Christine Solnon,et al.  Optimisation par colonies de fourmis pour le problème du sac à dos multidimensionnel , 2007, Tech. Sci. Informatiques.

[8]  E. J. Hoffman,et al.  Constructions for the Solution of the m Queens Problem , 1969 .

[9]  Z. Michalewicz,et al.  A new version of ant system for subset problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  Fred W. Glover,et al.  ID Walk: A Candidate List Strategy with a Simple Diversification Device , 2004, CP.

[11]  Richard F. Hartl,et al.  An improved Ant System algorithm for theVehicle Routing Problem , 1999, Ann. Oper. Res..

[12]  Thomas Stützle,et al.  MAX-MIN Ant System , 2000, Future Gener. Comput. Syst..

[13]  Christine Solnon,et al.  Ants can solve constraint satisfaction problems , 2002, IEEE Trans. Evol. Comput..

[14]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[15]  Christine Solnon,et al.  Ant Algorithm for the Graph Matching Problem , 2005, EvoCOP.

[16]  Andrew J. Davenport,et al.  Solving constraint satisfaction sequencing problems by iterative repair , 2001 .

[17]  Terry Jones,et al.  Fitness Distance Correlation as a Measure of Problem Difficulty for Genetic Algorithms , 1995, ICGA.

[18]  L. Smith,et al.  To be or Not to Be , 1957, Journal of psychiatric nursing and mental health services.

[19]  Roberto Battiti,et al.  Reactive Local Search for the Maximum Clique Problem1 , 2001, Algorithmica.

[20]  Derek G. Bridge,et al.  When Ants Attack: Ant Algorithms for Constraint Satisfaction Problems , 2005, Artificial Intelligence Review.

[21]  Patrick Prosser,et al.  An Empirical Study of the Stable Marriage Problem with Ties and Incomplete Lists , 2002, ECAI.

[22]  Toby Walsh,et al.  Random Constraint Satisfaction: Theory Meets Practice , 1998, CP.

[23]  Marco Dorigo,et al.  The hyper-cube framework for ant colony optimization , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[24]  Nils Boysen,et al.  Comments on "Solving real car sequencing problems with ant colony optimization" , 2007, Eur. J. Oper. Res..

[25]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[26]  Tamás Kis,et al.  On the complexity of the car sequencing problem , 2004, Oper. Res. Lett..

[27]  Helena Ramalhinho Dias Lourenço,et al.  Iterated Local Search , 2001, Handbook of Metaheuristics.

[28]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[29]  Christine Solnon,et al.  A Comparative Study of Ant Colony Optimization and Reactive Search for Graph Matching Problems , 2006, EvoCOP.

[30]  Russell Impagliazzo,et al.  Towards an analysis of local optimization algorithms , 1996, STOC '96.

[31]  Richard J. Wallace,et al.  Partial Constraint Satisfaction , 1989, IJCAI.

[32]  Pierre Hansen,et al.  Variable Neighborhood Search , 2018, Handbook of Heuristics.

[33]  Jano I. van Hemert,et al.  Comparing evolutionary algorithms on binary constraint satisfaction problems , 2003, IEEE Trans. Evol. Comput..

[34]  Jean-Charles Régin,et al.  A Filtering Algorithm for Constraints of Difference in CSPs , 1994, AAAI.

[35]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[36]  Laurent Perron,et al.  Combining Forces to Solve the Car Sequencing Problem , 2004, CPAIOR.

[37]  Jean-Jacques Chabrier,et al.  Measuring the Spatial Dispersion of Evolutionary Search Processes: Application to Walksat , 2001, Artificial Evolution.

[38]  Mauro Birattari,et al.  Model-Based Search for Combinatorial Optimization: A Critical Survey , 2004, Ann. Oper. Res..

[39]  Alain Colmerauer,et al.  An introduction to Prolog III , 1989, CACM.

[40]  Narendra Jussien,et al.  Local search with constraint propagation and conflict-based heuristics , 2000, Artif. Intell..

[41]  Francesca Rossi,et al.  Semiring-based constraint satisfaction and optimization , 1997, JACM.

[42]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[43]  Hisashi Handa,et al.  Hybridization of Estimation of Distribution Algorithms with a Repair Method for Solving Constraint Satisfaction Problems , 2003, GECCO.

[44]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[45]  Waldo C. Kabat,et al.  Job-shop scheduling using automated reasoning: A case study of the car-sequencing problem , 2004, Journal of Automated Reasoning.

[46]  Jean-Charles Régin,et al.  A Filtering Algorithm for Global Sequencing Constraints , 1997, CP.

[47]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[48]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[49]  Steven Minton,et al.  Minimizing Conflicts: A Heuristic Repair Method for Constraint Satisfaction and Scheduling Problems , 1992, Artif. Intell..

[50]  Marco Dorigo,et al.  Ant colony optimization for continuous domains , 2008, Eur. J. Oper. Res..

[51]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[52]  A. B. Baker Intelligent backtracking on constraint satisfaction problems: experimental and theoretical results , 1995 .

[53]  Gilles Pesant,et al.  Revisiting the Sequence Constraint , 2006, CP.

[54]  Toby Walsh,et al.  Local Search and the Number of Solutions , 1996, CP.

[55]  Daniel Angus,et al.  Multiple objective ant colony optimisation , 2009, Swarm Intelligence.

[56]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[57]  Bertrand Estellon,et al.  Two local search approaches for solving real-life car sequencing problems , 2008, Eur. J. Oper. Res..

[58]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[59]  Pascal Van Hentenryck,et al.  A constraint-based architecture for local search , 2002, OOPSLA '02.

[60]  Ke Xu,et al.  Random constraint satisfaction: Easy generation of hard (satisfiable) instances , 2007, Artif. Intell..

[61]  Toby Walsh,et al.  The Constrainedness of Search , 1996, AAAI/IAAI, Vol. 1.

[62]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[63]  Christine Solnon,et al.  A study of ACO capabilities for solving the maximum clique problem , 2006, J. Heuristics.

[64]  Jin-Kao Hao,et al.  Tabu Search for Maximal Constraint Satisfaction Problems , 1997, CP.

[65]  Thomas Stützle,et al.  A short convergence proof for a class of ant colony optimization algorithms , 2002, IEEE Trans. Evol. Comput..

[66]  M. Resende,et al.  A probabilistic heuristic for a computationally difficult set covering problem , 1989 .

[67]  Christine Solnon,et al.  Solving Permutation Constraint Satisfaction Problems with Artificial Ants , 2000, ECAI.

[68]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.

[69]  Tad Hogg,et al.  Refining the Phase Transition in Combinatorial Search , 1996, Artif. Intell..

[70]  Bertrand Estellon,et al.  Ordonnancement de véhicules: une approche par recherche locale à grand voisinage , 2005 .

[71]  Andrew J. Davenport A Comparison of Complete and Incomplete Algorithms in the Easy and Hard Regions , 1995 .

[72]  Patrick Albert,et al.  Integration of ACO in a Constraint Programming Language , 2008, ANTS Conference.

[73]  Patrick Albert,et al.  Strong Combination of Ant Colony Optimization with Constraint Programming Optimization , 2010, CPAIOR.

[74]  Thomas Stützle,et al.  Stochastic Local Search: Foundations & Applications , 2004 .

[75]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[76]  D. Dasgupta Artificial Immune Systems and Their Applications , 1998, Springer Berlin Heidelberg.

[77]  Peter F. Stadler,et al.  Towards a theory of landscapes , 1995 .

[78]  Jano I. van Hemert,et al.  Measuring the Searched Space to Guide Efficiency: The Principle and Evidence on Constraint Satisfaction , 2002, PPSN.

[79]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[80]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[81]  Christian Bessiere,et al.  Arc Consistency for General Constraint Networks: Preliminary Results , 1997, IJCAI.

[82]  David B. Shmoys,et al.  Computing near-optimal solutions to combinatorial optimization problems , 1994, Combinatorial Optimization.

[83]  Eric Horvitz,et al.  Dynamic restart policies , 2002, AAAI/IAAI.

[84]  Marc Gravel,et al.  Crossover Operators for the Car Sequencing Problem , 2007, EvoCOP.

[85]  Pascal Van Hentenryck,et al.  Numerica: A Modeling Language for Global Optimization , 1997, IJCAI.

[86]  Marc Gravel,et al.  Review and comparison of three methods for the solution of the car sequencing problem , 2005, J. Oper. Res. Soc..

[87]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[88]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[89]  Werner Ebeling,et al.  The Density of States - A Measure of the Difficulty of Optimisation Problems , 1996, PPSN.

[90]  Christine Solnon,et al.  The car sequencing problem: Overview of state-of-the-art methods and industrial case-study of the ROADEF'2005 challenge problem , 2008, Eur. J. Oper. Res..

[91]  Ian P. Gent Two Results on Car-sequencing Problems , 1998 .

[92]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[93]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[94]  Toby Walsh,et al.  CSPLIB: A Benchmark Library for Constraints , 1999, CP.

[95]  Kenneth A. De Jong,et al.  Measurement of Population Diversity , 2001, Artificial Evolution.

[96]  Christine Solnon,et al.  Searching for Maximum Cliques with Ant Colony Optimization , 2003, EvoWorkshops.

[97]  Toby Walsh,et al.  Encodings of the Sequence Constraint , 2007, CP.