Robust Optimization with Decision-Dependent Information Discovery

Robust optimization is a popular paradigm for modeling and solving two- and multi-stage decision-making problems affected by uncertainty. Most approaches assume that the uncertain parameters can be observed for free and that the sequence in which they are revealed is independent of the decision-maker's actions. Yet, these assumptions fail to hold in many real-world applications where the time of information discovery is decision-dependent and the uncertain parameters only become observable after an often costly investment. To fill this gap, we consider two- and multi-stage robust optimization problems in which part of the decision variables control the time of information discovery. Thus, information available at any given time is decision-dependent and can be discovered (at least in part) by making strategic exploratory investments in previous stages. We propose a novel dynamic formulation of the problem and prove its correctness. We leverage our model to provide a solution method inspired from the K-adaptability approximation, whereby K candidate strategies for each decision stage are chosen here-and-now and, at the beginning of each period, the best of these strategies is selected after the uncertain parameters that were chosen to be observed are revealed. We reformulate the problem as a finite program solvable with off-the-shelf solvers. We generalize our approach to the minimization of piecewise linear convex functions. We demonstrate effectiveness of our approach on synthetic and real data instances of the active preference elicitation problem used to recommend policies that meet the needs of policy-makers at the Los Angeles Homeless Services Authority. We present several other problems of practical interest to which our approaches apply.

[1]  Leonard J. Savage,et al.  The Theory of Statistical Decision , 1951 .

[2]  M. Allais Le comportement de l'homme rationnel devant le risque : critique des postulats et axiomes de l'ecole americaine , 1953 .

[3]  D. Kahneman,et al.  Anomalies: The Endowment Effect, Loss Aversion, and Status Quo Bias , 1991 .

[4]  Zvi Artstein,et al.  Sensors and Information in Optimization Under Stochastic Uncertainty , 1993, Math. Oper. Res..

[5]  Matteo Fischetti,et al.  A branch-and-cut algorithm for the resource-constrained minimum-weight arborescence problem , 1997, Networks.

[6]  Tore Wiig Jonsbråten,et al.  Optimization models for petroleum field exploitation , 1998 .

[7]  Arkadi Nemirovski,et al.  Robust Convex Optimization , 1998, Math. Oper. Res..

[8]  David L. Woodruff,et al.  A class of stochastic programs withdecision dependent random elements , 1998, Ann. Oper. Res..

[9]  R. Kraut,et al.  Vehicle scheduling in public transit and Lagrangean pricing , 1998 .

[10]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[11]  José M. Valério de Carvalho,et al.  Exact solution of bin-packing problems using column generation and branch-and-bound , 1999, Ann. Oper. Res..

[12]  J. Mamer,et al.  A Decomposition-Based Pricing Procedure for Large-Scale Linear Programs: An Application to the Linear Multicommodity Flow Problem , 2000 .

[13]  Arkadi Nemirovski,et al.  Robust solutions of Linear Programming problems contaminated with uncertain data , 2000, Math. Program..

[14]  John R. Hauser,et al.  Fast Polyhedral Adaptive Conjoint Estimation , 2002 .

[15]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .

[16]  Donald Goldfarb,et al.  Robust Portfolio Selection Problems , 2003, Math. Oper. Res..

[17]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[18]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[19]  Ignacio E. Grossmann,et al.  A stochastic programming approach to planning of offshore gas field developments under uncertainty in reserves , 2004, Comput. Chem. Eng..

[20]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[21]  Craig Boutilier,et al.  Eliciting Bid Taker Non-price Preferences in (Combinatorial) Auctions , 2004, AAAI.

[22]  Melvyn Sim,et al.  Robust linear optimization under general norms , 2004, Oper. Res. Lett..

[23]  Boaz Golany,et al.  Retailer-Supplier Flexible Commitments Contracts: A Robust Optimization Approach , 2005, Manuf. Serv. Oper. Manag..

[24]  Dimitris Bertsimas,et al.  Optimization over integers , 2005 .

[25]  Ignacio E. Grossmann,et al.  A Class of stochastic programs with decision dependent uncertainty , 2006, Math. Program..

[26]  Georgia Perakis,et al.  A Robust Optimization Approach to Dynamic Pricing and Inventory Control with no Backorders , 2006, Math. Program..

[27]  Ignacio E. Grossmann,et al.  A novel branch and bound algorithm for optimal development of gas fields under uncertainty in reserves , 2006, Comput. Chem. Eng..

[28]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[29]  Alper Atamtürk,et al.  Two-Stage Robust Network Flow and Design Under Demand Uncertainty , 2007, Oper. Res..

[30]  John R. Hauser,et al.  Probabilistic Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis: Theory and Application , 2007 .

[31]  Min-Max Regret Robust Optimization Approach on Interval Data Uncertainty , 2008 .

[32]  De Leone,et al.  Computational Optimization and Applications Volume 34, Number 2, June 2006 , 2006 .

[33]  A. Quaranta,et al.  Robust Portfolio Management , 2008 .

[34]  I-Hsuan Hong,et al.  Scenario relaxation algorithm for finite scenario-based min-max regret and min-max relative regret robust optimization , 2008, Comput. Oper. Res..

[35]  Christos T. Maravelias,et al.  A stochastic programming approach for clinical trial planning in new drug development , 2008, Comput. Chem. Eng..

[36]  A. Thiele Multi-product pricing via robust optimisation , 2009 .

[37]  Christos T. Maravelias,et al.  Modeling methods and a branch and cut algorithm for pharmaceutical clinical trial planning using stochastic programming , 2010, Eur. J. Oper. Res..

[38]  Michel Gendreau,et al.  A note on branch-and-cut-and-price , 2010, Oper. Res. Lett..

[39]  John-Paul Clarke,et al.  Optimization of R&D project portfolios under endogenous uncertainty , 2010, Eur. J. Oper. Res..

[40]  Daniel Kuhn,et al.  Primal and dual linear decision rules in stochastic and robust optimization , 2011, Math. Program..

[41]  Muhong Zhang,et al.  Two-stage minimax regret robust uncapacitated lot-sizing problems with demand uncertainty , 2011, Oper. Res. Lett..

[42]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[43]  D. Bertsimas,et al.  A Hierarchy of Near-Optimal Policies for , 2011 .

[44]  Daniel Kuhn,et al.  Decision rules for information discovery in multi-stage stochastic programming , 2011, IEEE Conference on Decision and Control and European Control Conference.

[45]  Pablo A. Parrilo,et al.  A Hierarchy of Near-Optimal Policies for Multistage Adaptive Optimization , 2011, IEEE Transactions on Automatic Control.

[46]  Ignacio E. Grossmann,et al.  Solution strategies for multistage stochastic programming with endogenous uncertainties , 2011, Comput. Chem. Eng..

[47]  Dimitris Bertsimas,et al.  On the power and limitations of affine policies in two-stage adaptive optimization , 2012, Math. Program..

[48]  Daniel Kuhn,et al.  A constraint sampling approach for multi-stage robust optimization , 2012, Autom..

[49]  Daniel Kuhn,et al.  Robust Software Partitioning with Multiple Instantiation , 2012, INFORMS J. Comput..

[50]  Long Zhao,et al.  Solving two-stage robust optimization problems using a column-and-constraint generation method , 2013, Oper. Res. Lett..

[51]  Kerem Bülbül,et al.  Simultaneous column-and-row generation for large-scale linear programs with column-dependent-rows , 2013, Math. Program..

[52]  Ruslan Sadykov,et al.  Column generation for extended formulations , 2011, EURO J. Comput. Optim..

[53]  Dimitris Bertsimas,et al.  Learning Preferences Under Noise and Loss Aversion: An Optimization Approach , 2013, Oper. Res..

[54]  Yongpei Guan,et al.  Two-Stage Minimax Regret Robust Unit Commitment , 2013, IEEE Transactions on Power Systems.

[55]  Dimitris Bertsimas,et al.  Fairness, Efficiency, and Flexibility in Organ Allocation for Kidney Transplantation , 2013, Oper. Res..

[56]  Christodoulos A. Floudas,et al.  The Robust Capacitated Vehicle Routing Problem Under Demand Uncertainty , 2013, Oper. Res..

[57]  Tsan Sheng Ng,et al.  Robust regret for uncertain linear programs with application to co-production models , 2013, Eur. J. Oper. Res..

[58]  J. Watson,et al.  Multi-Stage Robust Unit Commitment Considering Wind and Demand Response Uncertainties , 2013, IEEE Transactions on Power Systems.

[59]  Yongpei Guan,et al.  Multi-stage robust unit commitment considering wind and demand response uncertainties , 2012, 2014 IEEE PES General Meeting | Conference & Exposition.

[60]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[61]  Guang Li,et al.  Two-stage network constrained robust unit commitment problem , 2014, Eur. J. Oper. Res..

[62]  Jean-Philippe Vial,et al.  Robust Optimization , 2021, ICORES.

[63]  Jianhui Wang,et al.  Robust Optimization for Transmission Expansion Planning: Minimax Cost vs. Minimax Regret , 2014, IEEE Transactions on Power Systems.

[64]  Alexander Mitsos,et al.  Multivariate McCormick relaxations , 2014, J. Glob. Optim..

[65]  Dimitris Bertsimas,et al.  Design of Near Optimal Decision Rules in Multistage Adaptive Mixed-Integer Optimization , 2015, Oper. Res..

[66]  Daniel Kuhn,et al.  K-Adaptability in Two-Stage Robust Binary Programming , 2015, Oper. Res..

[67]  David P. Morton,et al.  Prioritization via Stochastic Optimization , 2015, Manag. Sci..

[68]  Dick den Hertog,et al.  A practical guide to robust optimization , 2015, 1501.02634.

[69]  Paul W. Goldberg,et al.  Autonomous Agents and Multiagent Systems , 2016, Lecture Notes in Computer Science.

[70]  Iain Dunning,et al.  Multistage Robust Mixed-Integer Optimization with Adaptive Partitions , 2016, Oper. Res..

[71]  Chrysanthos E. Gounaris,et al.  Multi‐stage adjustable robust optimization for process scheduling under uncertainty , 2016 .

[72]  Michael Poss,et al.  Decomposition for adjustable robust linear optimization subject to uncertainty polytope , 2016, Comput. Manag. Sci..

[73]  Amir Ardestani-Jaafari,et al.  Robust Optimization of Sums of Piecewise Linear Functions with Application to Inventory Problems , 2015, Oper. Res..

[74]  Anupam Gupta,et al.  Algorithms and Adaptivity Gaps for Stochastic Probing , 2016, SODA.

[75]  Daniel Kuhn,et al.  K-adaptability in two-stage distributionally robust binary programming , 2015, Oper. Res. Lett..

[76]  Dick den Hertog,et al.  Multistage Adjustable Robust Mixed-Integer Optimization via Iterative Splitting of the Uncertainty Set , 2016, INFORMS J. Comput..

[77]  Omid Nohadani,et al.  Robust optimization with time-dependent uncertainty in radiation therapy , 2017 .

[78]  Nicole Immorlica,et al.  Uncharted but not Uninfluenced: Influence Maximization with an Uncertain Network , 2017, AAMAS.

[79]  Dimitris Bertsimas,et al.  Optimal classification trees , 2017, Machine Learning.

[80]  Xu Andy Sun,et al.  Multistage Robust Unit Commitment With Dynamic Uncertainty Sets and Energy Storage , 2016, IEEE Transactions on Power Systems.

[81]  Michael R. Wagner,et al.  Closed-Form Solutions for Robust Inventory Management , 2017, Manag. Sci..

[82]  John Lygeros,et al.  Robust optimal control with adjustable uncertainty sets , 2015, Autom..

[83]  Alexander Shapiro Interchangeability principle and dynamic equations in risk averse stochastic programming , 2017, Oper. Res. Lett..

[84]  Myun-Seok Cheon,et al.  Relaxations and discretizations for the pooling problem , 2016, Journal of Global Optimization.

[85]  Song-Hee Kim,et al.  Maximizing Intervention Effectiveness , 2017, Manag. Sci..

[86]  Anupam Gupta,et al.  Adaptivity Gaps for Stochastic Probing: Submodular and XOS Functions , 2016, SODA.

[87]  Sahil Singla Combinatorial Optimization Under Uncertainty ( Probing and Stopping-Time Algorithms ) , 2017 .

[88]  Fengqi You,et al.  Adaptive robust optimization with minimax regret criterion: Multiobjective optimization framework and computational algorithm for planning and scheduling under uncertainty , 2018, Comput. Chem. Eng..

[89]  Dimitris Bertsimas,et al.  Binary decision rules for multistage adaptive mixed-integer optimization , 2018, Math. Program..

[90]  Zuo-Jun Max Shen,et al.  Robust Defibrillator Deployment Under Cardiac Arrest Location Uncertainty via Row-and-Column Generation , 2015, Oper. Res..

[91]  Kerem Bülbül,et al.  Benders decomposition and column-and-row generation for solving large-scale linear programs with column-dependent-rows , 2018, Eur. J. Oper. Res..

[92]  Kai Wang,et al.  The Price of Usability: Designing Operationalizable Strategies for Security Games , 2018, IJCAI.

[93]  Samuel Burer,et al.  A copositive approach for two-stage adjustable robust optimization with uncertain right-hand sides , 2016, Comput. Optim. Appl..

[94]  Omid Nohadani,et al.  Optimization under Decision-Dependent Uncertainty , 2016, SIAM J. Optim..

[95]  Laura Doval,et al.  Whether or not to open Pandora's box , 2018, J. Econ. Theory.

[96]  Melvyn Sim,et al.  Adjustable Robust Optimization via Fourier-Motzkin Elimination , 2018, Oper. Res..

[97]  Phebe Vayanos Two-Stage Robust Optimization with Decision-Dependent Information Discovery , 2019 .

[98]  Chaithanya Bandi,et al.  Robust Multiclass Queuing Theory for Wait Time Estimation in Resource Allocation Systems , 2018, Manag. Sci..

[99]  Eric Rice,et al.  Exploring Algorithmic Fairness in Robust Graph Covering Problems , 2020, NeurIPS.

[100]  Wolfram Wiesemann,et al.  The decision rule approach to optimization under uncertainty: methodology and applications , 2018, Computational Management Science.

[101]  Michael Poss,et al.  Faster algorithms for min-max-min robustness for combinatorial problems with budgeted uncertainty , 2019, Eur. J. Oper. Res..

[102]  Phebe Vayanos,et al.  Learning Optimal and Fair Decision Trees for Non-Discriminative Decision-Making , 2019, AAAI.

[103]  Patrick Jaillet,et al.  The Price of Interpretability , 2019, ArXiv.

[104]  Chrysanthos E. Gounaris,et al.  K-adaptability in two-stage mixed-integer robust optimization , 2017, Mathematical Programming Computation.

[105]  John P. Dickerson,et al.  Active Preference Elicitation via Adjustable Robust Optimization , 2020, ArXiv.

[106]  Erick Delage,et al.  Adjustable Robust Optimization Reformulations of Two-Stage Worst-Case Regret Minimization Problems , 2019, Oper. Res..

[107]  James R. Luedtke,et al.  Two-stage linear decision rules for multi-stage stochastic programming , 2017, Math. Program..