Distance Geometry for Realistic Molecular Conformations

In order to better understand the many different distance geometry numerical algorithms, it is necessary to relate them to real-world problems in computational chemistry. Here we consider small molecule applications, determination of protein conformation from nuclear magnetic resonance experiments (NMR), protein homology modeling, and more abstract applications to conformational classification and protein sequence comparison. Underlying methods involve conformations in more than three dimensions, low resolution treatments of large problems, and special abstract algebras for dealing with geometry.

[1]  P. Schleyer Encyclopedia of computational chemistry , 1998 .

[2]  A M Gronenborn,et al.  Direct structure refinement against residual dipolar couplings in the presence of rhombicity of unknown magnitude. , 1998, Journal of magnetic resonance.

[3]  W. Glunt,et al.  An alternating projection algorithm for computing the nearest euclidean distance matrix , 1990 .

[4]  Gordon M. Crippen Cluster distance geometry of polypeptide chains , 2004, J. Comput. Chem..

[5]  Tom L. Hayden,et al.  Searching confbrmational space with the spectral distance geometry algorithm , 1994 .

[6]  Russ B. Altman,et al.  Constrained Global Optimization for Estimating Molecular Structure from Atomic Distances , 2001, J. Comput. Biol..

[7]  William R Taylor,et al.  Modelling zinc-binding proteins with GADGET: genetic algorithm and distance geometry for exploring topology. , 2003, Journal of molecular biology.

[8]  U H Hansmann,et al.  New Monte Carlo algorithms for protein folding. , 1999, Current opinion in structural biology.

[10]  Dennis R Livesay,et al.  Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model. , 2006, Journal of molecular biology.

[11]  Tatsuya Akutsu,et al.  Protein Structure Alignment Using Dynamic Programing and Iterative Improvement , 1996 .

[12]  D C Spellmeyer,et al.  Conformational analysis using distance geometry methods. , 1997, Journal of molecular graphics & modelling.

[13]  D. Jacobs,et al.  Protein flexibility predictions using graph theory , 2001, Proteins.

[14]  I D Kuntz,et al.  Effects of limited input distance constraints upon the distance geometry algorithm , 1991, Biopolymers.

[15]  Leo Liberti,et al.  Molecular distance geometry methods: from continuous to discrete , 2010, Int. Trans. Oper. Res..

[16]  Andrea Grosso,et al.  Solving molecular distance geometry problems by global optimization algorithms , 2009, Comput. Optim. Appl..

[17]  A. Brünger,et al.  Conformational variability of solution nuclear magnetic resonance structures. , 1995, Journal of molecular biology.

[18]  A M Gronenborn,et al.  A robust method for determining the magnitude of the fully asymmetric alignment tensor of oriented macromolecules in the absence of structural information. , 1998, Journal of magnetic resonance.

[19]  J H Prestegard,et al.  NMR structures of biomolecules using field oriented media and residual dipolar couplings , 2000, Quarterly Reviews of Biophysics.

[20]  Guoliang Xue,et al.  Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, Proceedings of a DIMACS Workshop, USA, March 20-21, 1995 , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[21]  Ram Samudrala,et al.  Distance geometry generates native‐like folds for small helical proteins using the consensus distances of predicted protein structures , 1998, Protein science : a publication of the Protein Society.

[22]  Michael D. Miller,et al.  Comparison of Knowledge-Based and Distance Geometry Approaches for Generation of Molecular Conformations , 2001, J. Chem. Inf. Comput. Sci..

[23]  David A. Pearlman,et al.  How is an NMR structure best defined? An analysis of molecular dynamics distance-based approaches , 1994, Journal of biomolecular NMR.

[24]  U. Bastolla,et al.  Principal eigenvector of contact matrices and hydrophobicity profiles in proteins , 2004, Proteins.

[25]  M. Nilges,et al.  Sampling Properties of Simulated Annealing and Distance Geometry , 1991 .

[26]  Roland Lindh,et al.  New General Tools for Constrained Geometry Optimizations. , 2005, Journal of chemical theory and computation.

[27]  Leonard M. Blumenthal,et al.  Theory and applications of distance geometry , 1954 .

[28]  Ioannis Z. Emiris,et al.  Molecular conformation search by distance matrix perturbations , 2005 .

[29]  C. B. Lucasius,et al.  Optimisation of metric matrix embedding by genetic algorithms , 1996, Journal of biomolecular NMR.

[30]  S. Sudarsanam,et al.  An automated method for modeling proteins on known templates using distance geometry , 1993, Protein science : a publication of the Protein Society.

[31]  A T Brünger,et al.  Sampling and efficiency of metric matrix distance geometry: A novel partial metrization algorithm , 1992, Journal of biomolecular NMR.

[32]  Marcos Raydan,et al.  Preconditioners for distance matrix algorithms , 1994, J. Comput. Chem..

[33]  G. Fox,et al.  Explicit distance geometry: identification of all the degrees of freedom in a large RNA molecule. , 1991, Journal of biomolecular structure & dynamics.

[34]  Carol A. Venanzi,et al.  A comparison of distance geometry and molecular dynamics simulation techniques for conformational analysis of β‐cyclodextrin , 1992 .

[35]  Dimensional oscillation. A fast variation of energy embedding gives good results with the AMBER potential energy function. , 2009, International journal of peptide and protein research.

[36]  Carlile Lavor,et al.  Extending the geometric build-up algorithm for the molecular distance geometry problem , 2008, Inf. Process. Lett..

[37]  Gordon M. Crippen,et al.  Global energy minimization by rotational energy embedding , 1990, J. Chem. Inf. Comput. Sci..

[38]  R. Kaptein,et al.  Use of very long-distance NOEs in a fully deuterated protein: an approach for rapid protein fold determination. , 2003, Journal of magnetic resonance.

[39]  Catherine E. Peishoff,et al.  Improvements to the distance geometry algorithm for conformational sampling of cyclic structures , 1992 .

[40]  Qunfeng Dong,et al.  A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances , 2002, J. Glob. Optim..

[41]  Statistical mechanics of protein folding by cluster distance geometry , 2004, Biopolymers.

[42]  Timothy F. Havel Metric matrix embedding in protein structure calculations, NMR spectra analysis, and relaxation theory , 2003 .

[43]  Timothy F. Havel Distance Geometry: Theory, Algorithms, and Chemical Applications , 2002 .

[44]  W. V. Gunsteren,et al.  Molecular dynamics free energy calculation in four dimensions , 1994 .

[45]  Jacques Gabarro-Arpa,et al.  Hamming distance geometry of a protein conformational space: Application to the clustering of a 4‐ns molecular dynamics trajectory of the HIV‐1 integrase catalytic core , 2001, Proteins.

[46]  Andrew E. Torda,et al.  Structure optimization combining soft-core interaction functions, the diffusion equation method, and molecular dynamics , 1997 .

[47]  Andrew R. Leach,et al.  A combined model-building and distance-geometry approach to automated conformational analysis and search , 1992, J. Chem. Inf. Comput. Sci..

[48]  R J Williams,et al.  Topological mirror images in protein structure computation: An underestimated problem , 1991, Proteins.

[49]  Timothy F. Havel,et al.  Recent Advances in Molecular Distance Geometry , 1996, German Conference on Bioinformatics.

[50]  J. Rullmann,et al.  “Ensemble” iterative relaxation matrix approach: A new NMR refinement protocol applied to the solution structure of crambin , 1993, Proteins.

[51]  Gordon M. Crippen,et al.  Distance Geometry and Molecular Conformation , 1988 .

[52]  M. Frisch,et al.  Using redundant internal coordinates to optimize equilibrium geometries and transition states , 1996, J. Comput. Chem..

[53]  Lu Yang,et al.  Solving Spatial Constraints with Global Distance Coordinate System , 2006, Int. J. Comput. Geom. Appl..

[54]  Gordon M. Crippen,et al.  Exploring the conformation space of cycloalkanes by linearized embedding , 1992 .

[55]  Jorge J. Moré,et al.  Global Continuation for Distance Geometry Problems , 1995, SIAM J. Optim..

[56]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[57]  Jorge J. Moré,et al.  E-optimal solutions to distance geometry problems via global continuation , 1995, Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding.

[58]  Henry Wolkowicz,et al.  Solving Euclidean Distance Matrix Completion Problems Via Semidefinite Programming , 1999, Comput. Optim. Appl..

[59]  G. Crippen,et al.  Conformational sampling by a general linearized embedding algorithm , 1992 .

[60]  O Jardetzky,et al.  Computing the geometry of a molecule in dihedral angle space using n.m.r.-derived constraints. A new algorithm based on optimal filtering. , 1992, Journal of molecular biology.

[61]  W. V. van Gunsteren,et al.  Time-averaged nuclear Overhauser effect distance restraints applied to tendamistat. , 1990, Journal of molecular biology.

[62]  Classifying the conformations of a chemical system using matrices of integers , 1993 .

[63]  I D Kuntz,et al.  Application of distance geometry to the proton assignment problem , 1993, Biopolymers.

[64]  John P. Dalbec,et al.  Straightening Euclidean invariants , 1995, Annals of Mathematics and Artificial Intelligence.

[65]  B. Hendrickson The Molecular Problem: Determining Conformation from Pairwise Distances , 1990 .

[66]  H Nakamura,et al.  Intrinsic nature of the three-dimensional structure of proteins as determined by distance geometry with good sampling properties , 1993, Journal of biomolecular NMR.

[67]  W. Braun Distance geometry in distance and torsion angle space: Flexibility, convergence and sampling properties , 1991 .

[68]  Amit Singer,et al.  A remark on global positioning from local distances , 2008, Proceedings of the National Academy of Sciences.

[69]  Robert Michael Lewis,et al.  Molecular Embedding via a Second Order Dissimilarity Parameterized Approach , 2009, SIAM J. Sci. Comput..

[70]  Bruce Randall Donald,et al.  A Polynomial-Time Algorithm for De Novo Protein Backbone Structure Determination from Nuclear Magnetic Resonance Data , 2006, J. Comput. Biol..

[71]  S. Sherman,et al.  Derivation of locally accurate spatial protein structure from NMR data. , 1993, Progress in biophysics and molecular biology.

[72]  J. Kemmink,et al.  Dynamic modelling of a helical peptide in solution using NMR data: Multiple conformations and multi-spin effects , 1995, Journal of biomolecular NMR.

[73]  Timothy F. Havel,et al.  The sampling properties of some distance geometry algorithms applied to unconstrained polypeptide chains: A study of 1830 independently computed conformations , 1990, Biopolymers.

[74]  Zhijun Wu,et al.  A Geometric Buildup Algorithm for the Solution of the Distance Geometry Problem Using Least-Squares Approximation , 2009, Bulletin of mathematical biology.

[75]  Mark J. Forster,et al.  Application of distance geometry to 3D visualization of sequence relationships , 1999, Bioinform..

[76]  M Vendruscolo,et al.  Recovery of protein structure from contact maps. , 1997, Folding & design.

[77]  Timothy F. Havel,et al.  Distance geometry and geometric algebra , 1993 .

[78]  Wei-Min Liu,et al.  The embedding problem for predistance matrices , 1991 .

[79]  William Kile Glunt,et al.  Improved Convergence and Speed for the Distance Geometry Program APA to Determine Protein Structure , 2001, Comput. Chem..

[80]  Gordon M. Crippen,et al.  Chemical distance geometry: Current realization and future projection , 1991 .

[81]  K. Wüthrich,et al.  Torsion angle dynamics for NMR structure calculation with the new program DYANA. , 1997, Journal of molecular biology.

[82]  Hugo Kubinyi,et al.  3D QSAR in drug design : theory, methods and applications , 2000 .

[83]  Marcos Raydan,et al.  Molecular conformations from distance matrices , 1993, J. Comput. Chem..

[84]  G. Crippen Recognizing protein folds by cluster distance geometry , 2005, Proteins.

[85]  Dimitris K. Agrafiotis,et al.  Stochastic proximity embedding , 2003, J. Comput. Chem..

[86]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[87]  V. Dive,et al.  Accounting for Conformational Variability in NMR Structure of Cyclopeptides: Ensemble Averaging of Interproton Distance and Coupling Constant Restraints , 1997 .

[88]  Jorge J. Moré,et al.  Distance Geometry Optimization for Protein Structures , 1999, J. Glob. Optim..

[89]  Di Wu,et al.  An updated geometric build-up algorithm for solving the molecular distance geometry problems with sparse distance data , 2003, J. Glob. Optim..

[90]  K Wüthrich,et al.  Complete relaxation matrix refinement of NMR structures of proteins using analytically calculated dihedral angle derivatives of NOE intensities , 1991, Journal of biomolecular NMR.

[91]  W F van Gunsteren,et al.  A structure refinement method based on molecular dynamics in four spatial dimensions. , 1993, Journal of molecular biology.

[92]  M. Uschold,et al.  Methods and applications , 1953 .

[93]  P E Wright,et al.  Computational methods for determining protein structures from NMR data. , 1990, Biochemical pharmacology.

[94]  K. Wüthrich,et al.  Conformational sampling by NMR solution structures calculated with the program DIANA evaluated by comparison with long‐time molecular dynamics calculations in explicit water , 1996, Proteins.

[95]  Leo Liberti,et al.  Double variable neighbourhood search with smoothing for the molecular distance geometry problem , 2009, J. Glob. Optim..

[96]  A. Sarai,et al.  Determination of the NMR solution structure of a specific DNA complex of the Myb DNA-binding domain , 1995, Journal of biomolecular NMR.

[97]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[98]  Timothy F. Havel An evaluation of computational strategies for use in the determination of protein structure from distance constraints obtained by nuclear magnetic resonance. , 1991, Progress in biophysics and molecular biology.