Mechanisms and Dynamic Systems

The increasing application of industrial robots in different fields of technology augments the demand for further improvement of their performance. Energy consumption and working accuracy especially are becoming more and more important in assessing the efficiency of a robot. One way to improve these factors is the proper balancing of a robot manipulator. There are two main methods of balancing a robot manipulator: 1) by spring mechanisms or 2) by counterweights [1,2]. The problem of the optimum design of a robot spring balancing mechanism is discussed in Chapter 5.2. In this chapter, counterweight balancing of robot arms is the subject of investigation.

[1]  J. P. Karidis,et al.  Efficient Optimization of Computationally Expensive Objective Functions , 1986 .

[2]  Anthony Ralston,et al.  Mathematical Methods for Digital Computers , 1960 .

[3]  B. A Hockey The minimization of the fluctuation of input-shaft torque in plane mechanisms , 1972 .

[4]  Andrzej Osyczka,et al.  Computer Aided Multicriterion Optimization System in Use , 1989 .

[5]  Ferit Küçükay Dynamik der Zahnradgetriebe , 1987 .

[6]  Anand M. Sharan,et al.  The optimal balancing of the robotic manipulators , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  R. W. Daniels An introduction to numerical methods and optimization techniques , 1978 .

[8]  W. J. Studden,et al.  Theory Of Optimal Experiments , 1972 .

[9]  Andrzej Osyczka,et al.  Multicriterion optimization in engineering with FORTRAN programs , 1984 .

[10]  Richard J. Balling,et al.  Approximation of Computationally Expensive and Noisy Functions for Constrained Nonlinear Optimization , 1987 .

[11]  F. Küçükay Dynamik der Zahnradgetriebe : Modelle, Verfahren, Verhalten , 1987 .

[12]  L. A. Stone,et al.  Computer Aided Design of Experiments , 1969 .

[13]  O. L. Davies,et al.  Statistical Methods. 6th Edition. , 1968 .

[14]  N. Draper,et al.  Applied Regression Analysis , 1966 .

[15]  C. Currin,et al.  A Bayesian Approach to the Design and Analysis of Computer Experiments , 1988 .

[16]  George E. P. Box,et al.  Empirical Model‐Building and Response Surfaces , 1988 .

[17]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[18]  W. Welch A mean squared error criterion for the design of experiments , 1983 .

[19]  G. M. L. Gladwell,et al.  Inverse Problems in Vibration , 1986 .

[20]  T. W. Lee,et al.  Optimum Balancing of Combined Shaking Force, Shaking Moment, and Torque Fluctuations in High-Speed Linkages , 1984 .

[21]  G. G. Lowen,et al.  Simultaneous Optimization of Dynamic Reactions of a Four-Bar Linkage With Prescribed Maximum Shaking Force , 1983 .

[22]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[23]  Jerome Sacks,et al.  Designs for Computer Experiments , 1989 .