On Designing Optimal Data Purchasing Strategies for Online Ad Auctions

In online advertising, advertisers can purchase consumer relevant data from data marketplaces with a certain expenditure, and exploit the purchased data to guide the bidding process in ad auctions. One of the pressing problem faced by advertisers is to design the optimal data purchasing strategy (how much data to purchase to be competitive in bidding process) in online ad auctions. In this paper, we model the data purchasing strategy design as a convex optimization problem, jointly considering the expenditure paid during data purchasing and the benefits obtained from ad auctions. Using the techniques from Baysian game theory and convex analysis, we derive the optimal purchasing strategies for advertisers in different market scenarios. We also theoretically prove that the resulting strategy profile is the unique one that achieves Nash Equilibrium. Our analysis shows that the proposed data purchasing strategy can handle diverse ad auctions and valuation learning models. Our numerical results empirically reveal how the equilibrium state changes with variation of the strategic environment.

[1]  Dirk Bergemann,et al.  Information Acquisition and Efficient Mechanism Design , 2000 .

[2]  Jun Wang,et al.  Real-time bidding for online advertising: measurement and analysis , 2013, ADKDD '13.

[3]  Renato Paes Leme,et al.  On revenue in the generalized second price auction , 2012, WWW.

[4]  Sergei Vassilvitskii,et al.  To Match or Not to Match , 2015, ACM Trans. Economics and Comput..

[5]  Xianwen Shi,et al.  Optimal Auctions with Information Acquisition , 2007, Games Econ. Behav..

[6]  Bernard J. Jansen,et al.  Sponsored search: an overview of the concept, history, and technology , 2008, Int. J. Electron. Bus..

[7]  M. Keane,et al.  Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets , 1996 .

[8]  Tülin Erdem,et al.  Learning Models: An Assessment of Progress, Challenges and New Developments , 2011 .

[9]  Haifeng Xu,et al.  Algorithmic Bayesian persuasion , 2015, STOC.

[10]  Éva Tardos,et al.  Information Asymmetries in Common-Value Auctions with Discrete Signals , 2013, EC.

[11]  Kane S. Sweeney,et al.  Bayes-nash equilibria of the generalized second price auction , 2009, EC '09.

[12]  Haifeng Xu,et al.  Targeting and Signaling in Ad Auctions , 2017, SODA.

[13]  Moshe Babaioff,et al.  Peaches, lemons, and cookies: designing auction markets with dispersed information , 2013, EC '13.

[14]  Sergei Vassilvitskii,et al.  Ad auctions with data , 2012, 2012 Proceedings IEEE INFOCOM Workshops.

[15]  E. H. Clarke Multipart pricing of public goods , 1971 .

[16]  Claudio Gentile,et al.  Ieee Transactions on Information Theory 1 Regret Minimization for Reserve Prices in Second-price Auctions , 2022 .

[17]  D. Bergemann,et al.  Selling Cookies , 2013 .

[18]  Theodore Groves,et al.  Incentives in Teams , 1973 .

[19]  Anirban Dasgupta,et al.  Overcoming browser cookie churn with clustering , 2012, WSDM '12.

[20]  Ashish Goel,et al.  Truthful auctions for pricing search keywords , 2006, EC '06.

[21]  D. Sappington,et al.  Supplying Information to Facilitate Price Discrimination , 1994 .

[22]  Mohammad Mahdian,et al.  Externalities in online advertising , 2008, WWW.

[23]  Moshe Tennenholtz,et al.  Signaling Schemes for Revenue Maximization , 2012, TEAC.

[24]  Paul Milgrom,et al.  Simplified mechanisms with an application to sponsored-search auctions , 2010, Games Econ. Behav..

[25]  Zoë Abrams,et al.  Ad Auction Design and User Experience , 2007, WINE.

[26]  Sudipto Guha,et al.  Selective Call Out and Real Time Bidding , 2010, WINE.

[27]  Patrick Hummel,et al.  When Does Improved Targeting Increase Revenue? , 2016, ACM Trans. Economics and Comput..

[28]  Ryen W. White,et al.  From cookies to cooks: insights on dietary patterns via analysis of web usage logs , 2013, WWW.

[29]  Tao Qin,et al.  Sponsored Search Auctions , 2014, ACM Trans. Intell. Syst. Technol..

[30]  Michael P. Wellman,et al.  Signal structure and strategic information acquisition: deliberative auctions with interdependent values , 2014, AAMAS.

[31]  Jason D. Hartline,et al.  Auctions with unique equilibria , 2013, EC '13.

[32]  David R. M. Thompson,et al.  Revenue optimization in the generalized second-price auction , 2013, EC '13.

[33]  Paul Milgrom,et al.  Putting Auction Theory to Work , 2004 .

[34]  Carl F. Mela,et al.  Online Display Advertising Markets: A Literature Review and Future Directions , 2019, Inf. Syst. Res..

[35]  Tao Qin,et al.  Generalized second price auctions with value externalities , 2014, AAMAS.

[36]  David Wajc,et al.  Near-Optimum Online Ad Allocation for Targeted Advertising , 2018, TEAC.

[37]  Shaojie Tang,et al.  Strategy-Proof Data Auctions with Negative Externalities: (Extended Abstract) , 2016, AAMAS.

[38]  William Vickrey,et al.  Counterspeculation, Auctions, And Competitive Sealed Tenders , 1961 .

[39]  Renato Paes Leme,et al.  Optimal mechanisms for selling information , 2012, EC '12.

[40]  Nikhil R. Devanur,et al.  Real-time bidding algorithms for performance-based display ad allocation , 2011, KDD.

[41]  Shengyu Li,et al.  Equilibria in Second Price Auctions with Information Acquisition , 2008 .

[42]  P. Jehiel,et al.  Auctions and Information acquisition: Sealed-bid or Dynamic Formats? , 2007 .

[43]  Tao Qin,et al.  Revenue Maximization for Finitely Repeated Ad Auctions , 2017, AAAI.

[44]  Michael Ostrovsky,et al.  Reserve Prices in Internet Advertising Auctions: A Field Experiment , 2009, Journal of Political Economy.

[45]  Vahab S. Mirrokni,et al.  Optimizing Display Advertising Markets: Challenges and Directions , 2015, IEEE Internet Computing.

[46]  Sergei Vassilvitskii,et al.  Value of Targeting , 2014, SAGT.

[47]  Hamid Nazerzadeh,et al.  Auctions with Dynamic Costly Information Acquisition , 2017, Oper. Res..

[48]  Dirk Bergemann,et al.  Information Acquisition in Interdependent Value Auctions , 2007 .