Big network traffic data visualization

Visualization is an important tool for capturing the network activities. Effective visualization allows people to gain insights into the data information and discovery of communication patterns of network flows. Such information may be difficult for human to perceive its relationships due to its numeric nature such as time, packet size, inter-packet time, and many other statistical features. Many existing work fail to provide an effective visualization method for big network traffic data. This work proposes a novel and effective method for visualizing network traffic data with statistical features of high dimensions. We combine Principal Component Analysis (PCA) and Mutidimensional Scaling (MDS) to effectively reduce dimensionality and use colormap for enhance visual quality for human beings. We obtain high quality images on a real-world network traffic dataset named ‘ISP’. Comparing with the popular t-SNE method, our visualization method is more flexible and scalable for plotting network traffic data which may require to preserve multi-dimensional information and relationship. Our plots also demonstrate the capability of handling a large amount of data. Using our method, the readers will be able to visualize their network traffic data as an alternative method of t-SNE.

[1]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[2]  T. Jirka Multidimensional Data Visualization , 2004 .

[3]  Paul A. Buhler,et al.  Big Data Fundamentals: Concepts, Drivers & Techniques , 2015 .

[4]  Gintautas Dzemyda,et al.  Multidimensional Data Visualization: Methods and Applications , 2012 .

[5]  Amitabh Varshney,et al.  Saliency-guided Enhancement for Volume Visualization , 2006, IEEE Transactions on Visualization and Computer Graphics.

[6]  Xiaojun Chang,et al.  Feature Interaction Augmented Sparse Learning for Fast Kinect Motion Detection , 2017, IEEE Transactions on Image Processing.

[7]  D. F. Fisher,et al.  Eye movements : cognition and visual perception , 1982 .

[8]  Melanie Tory,et al.  Human factors in visualization research , 2004, IEEE Transactions on Visualization and Computer Graphics.

[9]  Shingo Ata,et al.  Towards real-time processing for application identification of encrypted traffic , 2014, 2014 International Conference on Computing, Networking and Communications (ICNC).

[10]  Naomi B. Robbins,et al.  Creating More Effective Graphs , 2004 .

[11]  Marina Basu The Embodied Mind: Cognitive Science and Human Experience , 2004 .

[12]  Charles D. Hansen,et al.  A Survey of Colormaps in Visualization , 2016, IEEE Transactions on Visualization and Computer Graphics.

[13]  Ali A. Ghorbani,et al.  A Survey of Visualization Systems for Network Security , 2012, IEEE Transactions on Visualization and Computer Graphics.

[14]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[15]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[16]  Lane Harrison,et al.  The future of security visualization: Lessons from network visualization , 2012, IEEE Network.

[17]  Hans-Peter Seidel,et al.  Perceptually-Driven Visibility Optimization for Categorical Data Visualization. , 2012, IEEE transactions on visualization and computer graphics.

[18]  Bernhard Ager,et al.  Visualizing big network traffic data using frequent pattern mining and hypergraphs , 2013, Computing.

[19]  Ivan Herman,et al.  Graph Visualization and Navigation in Information Visualization: A Survey , 2000, IEEE Trans. Vis. Comput. Graph..

[20]  Klaus Mueller,et al.  Color Design for Illustrative Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[21]  Nuttachot Promrit,et al.  Traffic Flow Classification and Visualization for Network Forensic Analysis , 2015, 2015 IEEE 29th International Conference on Advanced Information Networking and Applications.

[22]  Jie Wu,et al.  Robust Network Traffic Classification , 2015, IEEE/ACM Transactions on Networking.

[23]  Francisco J. Varela,et al.  The Embodied Mind , 2018 .

[24]  Mahmoud Al-Ayyoub,et al.  Accelerating 3D medical volume segmentation using GPUs , 2016, Multimedia Tools and Applications.

[25]  Lane Harrison,et al.  Visualization evaluation for cyber security: trends and future directions , 2014, VizSEC.

[26]  Jian Wang,et al.  CyVOD: a novel trinity multimedia social network scheme , 2016, Multimedia Tools and Applications.

[27]  A. H. Munsell,et al.  Atlas of the Munsell color system , 1915 .

[28]  Georg Carle,et al.  Flow-inspector: a framework for visualizing network flow data using current web technologies , 2013, Computing.

[29]  Cynthia A. Brewer,et al.  Color use guidelines for data representation , 1999 .

[30]  Jianzhong Li,et al.  Color image watermarking scheme based on quaternion Hadamard transform and Schur decomposition , 2017, Multimedia Tools and Applications.

[31]  Pat Hanrahan,et al.  Enhancing Visual Analysis of Network Traffic Using a Knowledge Representation , 2006, 2006 IEEE Symposium On Visual Analytics Science And Technology.

[32]  R. Boothe,et al.  Perception of the visual environment , 2001 .

[33]  Jie Lei,et al.  Finding intrinsic color themes in images with human visual perception , 2018, Neurocomputing.

[34]  J. Neyman Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability , 1937 .

[35]  Jun Zhang,et al.  Network Traffic Classification Using Correlation Information , 2013, IEEE Transactions on Parallel and Distributed Systems.

[36]  Matthew O. Ward,et al.  XmdvTool: integrating multiple methods for visualizing multivariate data , 1994, Proceedings Visualization '94.

[37]  Jun Zhang,et al.  Internet Traffic Classification Using Constrained Clustering , 2014, IEEE Transactions on Parallel and Distributed Systems.

[38]  Colin Ware,et al.  Information Visualization: Perception for Design , 2000 .

[39]  Herman Snellen,et al.  Probebuchstaben zur Bestimmung der Sehschärfe , 1873 .

[40]  Jun Zhang,et al.  Internet Traffic Classification by Aggregating Correlated Naive Bayes Predictions , 2023, IEEE Transactions on Information Forensics and Security.

[41]  Maureen C. Stone,et al.  A field guide to digital color , 2003 .

[42]  Gintautas Dzemyda,et al.  Multidimensional Data Visualization , 2013 .

[43]  Mohamed Cheriet,et al.  A traffic visualization framework for monitoring large-scale inter-datacenter network , 2016, 2016 12th International Conference on Network and Service Management (CNSM).

[44]  Stephen R. Marsland,et al.  Machine Learning - An Algorithmic Perspective , 2009, Chapman and Hall / CRC machine learning and pattern recognition series.

[45]  F. Gregory Ashby,et al.  Multidimensional Models of Perception and Cognition , 2014 .

[46]  Yi Yang,et al.  Bi-Level Semantic Representation Analysis for Multimedia Event Detection , 2017, IEEE Transactions on Cybernetics.

[47]  Yi Yang,et al.  Semantic Pooling for Complex Event Analysis in Untrimmed Videos , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[48]  Dharma P. Agrawal,et al.  Handbook of Research on Modern Cryptographic Solutions for Computer and Cyber Security , 2016 .