Automatic preparation, calibration, and simulation of deformable objects

Many simulation environments – particularly those intended for medical simulation – require solid objects to deform at interactive rates, with deformation properties that correspond to real materials. Furthermore, new objects may be created frequently (for example, each time a new patient's data is processed), prohibiting manual intervention in the model preparation process. This paper provides a pipeline for rapid preparation of deformable objects with no manual intervention, specifically focusing on mesh generation (preparing solid meshes from surface models), automated calibration of models to finite element reference analyses (including a novel approach to reducing the complexity of calibrating nonhomogeneous objects), and automated skinning of meshes for interactive simulation.

[1]  Thomas Sangild Sørensen,et al.  GPU accelerated surgical simulators for complex morphology , 2005, IEEE Proceedings. VR 2005. Virtual Reality, 2005..

[2]  Gábor Székely,et al.  Mesh Topology Identification for Mass-Spring Models , 2003, MICCAI.

[3]  Doug L. James,et al.  Skinning mesh animations , 2005, ACM Trans. Graph..

[4]  Leif Kobbelt,et al.  Using Simulated Annealing to Obtain Good Nodal Approximations of Deformable Bodies , 1995 .

[5]  Thomas W. Sederberg,et al.  Free-form deformation of solid geometric models , 1986, SIGGRAPH.

[6]  Kup-Sze Choi,et al.  Deformable simulation using force propagation model with finite element optimization , 2004, Comput. Graph..

[7]  F Tendick,et al.  Measuring in vivo animal soft tissue properties for haptic modeling in surgical simulation. , 2001, Studies in health technology and informatics.

[8]  Jean-Claude Latombe,et al.  A Microsurgery Simulation System , 2001, MICCAI.

[9]  M A Srinivasan,et al.  Measurement of in-vivo force response of intra-abdominal soft tissues for surgical simulation. , 2002, Studies in health technology and informatics.

[10]  M. H. Hamza Proceedings of the IASTED International Conference on Biomedical Engineering, June 25-27, 2003, Salzburg, Austria , 2003 .

[11]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[12]  Doug L. James,et al.  ACCURATE REAL TIME DEFORMABLE OBJECTS , 1999 .

[13]  Mark A. Ganter,et al.  Real-time finite element modeling for surgery simulation: an application to virtual suturing , 2004, IEEE Transactions on Visualization and Computer Graphics.

[14]  Thomas Ertl,et al.  Large steps in GPU-based deformable bodies simulation , 2005, Simul. Model. Pract. Theory.

[15]  Paul-Louis George Adaptive Mesh Generation in 3 Dimensions by Means of a Delaunay Based Method. Applications to Mechanical Problems. , 2006 .

[16]  Jessica K. Hodgins,et al.  Estimating cloth simulation parameters from video , 2003, SCA '03.

[17]  Dinesh K. Pai,et al.  EigenSkin: real time large deformation character skinning in hardware , 2002, SCA '02.

[18]  Dan Morris Algorithms and Data Structures for Haptic Rendering: Curve Constraints, Distance Maps, and Data Logging , 2007 .

[19]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[20]  Allen Van Gelder,et al.  Approximate Simulation of Elastic Membranes by Triangulated Spring Meshes , 1998, J. Graphics, GPU, & Game Tools.

[21]  Marie-Paule Cani,et al.  Controlling Anisotropy in Mass-Spring Systems , 2000, Computer Animation and Simulation.

[22]  Matthias Müller,et al.  Volumetric Meshes for Real-Time Medical Simulations , 2003, Bildverarbeitung für die Medizin.

[23]  Sunil Arya,et al.  ANN: library for approximate nearest neighbor searching , 1998 .

[24]  Hervé Delingette,et al.  Surgery simulation and soft tissue modeling : International Symposium, IS4TM 2003, Juan-Les-Pins, France, June 12-13, 2003 : proceedings , 2003 .

[25]  Philip Fong,et al.  High-resolution three-dimensional sensing of fast deforming objects , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Stephane Cotin,et al.  Real Time Volumetric Deformable Models for Surgery Simulation , 1996, VBC.

[27]  Pierre Hellier,et al.  Level Set Methods in an EM Framework for Shape Classification and Estimation , 2004, International Conference on Medical Image Computing and Computer-Assisted Intervention.

[28]  Paul-Louis George,et al.  3D transient fixed point mesh adaptation for time-dependent problems: Application to CFD simulations , 2007, J. Comput. Phys..

[29]  François Conti,et al.  CHAI: An Open-Source Library for the Rapid Development of Haptic Scenes , 2005 .

[30]  Rüdiger Westermann,et al.  Interactive Simulation of Deformable Bodies on GPUs , 2005, SimVis.

[31]  Dinesh K. Pai,et al.  ArtDefo: accurate real time deformable objects , 1999, SIGGRAPH.

[32]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[33]  Thomas Sangild Sørensen,et al.  A GPU accelerated spring mass system for surgical simulation. , 2005, Studies in health technology and informatics.

[34]  Christian Laugier,et al.  Tissue Cutting Using Finite Elements and Force Feedback , 2003, IS4TH.

[35]  Jesper Mosegaard Parameter optimisation for the behaviour of elastic models over time. , 2004, Studies in health technology and informatics.

[36]  Paul-Louis George,et al.  An efficient algorithm for 3D adaptive meshing , 2001 .

[37]  Gábor Székely,et al.  Simultaneous Topology and Stiffness Identification for Mass-Spring Models Based on FEM Reference Deformations , 2004, MICCAI.

[38]  John Kenneth Salisbury,et al.  Soft-Tissue Simulation Using the Radial Elements Method , 2003, IS4TH.

[39]  Christian Laugier,et al.  Simulating soft tissue cutting using finite element models , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[40]  Abbas Samani,et al.  Measuring the elastic modulus of ex vivo small tissue samples. , 2003, Physics in medicine and biology.

[41]  Wolfgang Straßer,et al.  Deriving a Particle System from Continuum Mechanics for the Animation of Deformable Objects , 2003, IEEE Trans. Vis. Comput. Graph..

[42]  Betty Mohler,et al.  Elastically deformable 3D organs for haptic surgical simulation. , 2002, Studies in health technology and informatics.

[43]  Randy S. Haluck,et al.  A HAPTIC SURGICAL SIMULATOR FOR LAPAROSCOPIC CHOLECYSTECTOMY USING REAL-TIME DEFORMABLE ORGANS , 2003 .

[44]  Ronald Fedkiw,et al.  Adaptive physics based tetrahedral mesh generation using level sets , 2005, Engineering with Computers.

[45]  John Kenneth Salisbury,et al.  Dynamic simulation of deformable objects using the Long Elements Method , 2002, Proceedings 10th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. HAPTICS 2002.

[46]  Markus H. Gross,et al.  A versatile and robust model for geometrically complex deformable solids , 2004, Proceedings Computer Graphics International, 2004..

[47]  Dan Berg,et al.  Real-time finite element based virtual tissue cutting. , 2006, Studies in health technology and informatics.

[48]  Andrei V. Smirnov,et al.  Mesh generation for voxel-based objects , 2005 .

[49]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[50]  K. Ho-Le,et al.  Finite element mesh generation methods: a review and classification , 1988 .

[51]  Han-Wen Nienhuys,et al.  A Surgery Simulation Supporting Cuts and Finite Element Deformation , 2001, MICCAI.