Location-Dependent Effects of Inhibition on Local Spiking in Pyramidal Neuron Dendrites

Cortical computations are critically dependent on interactions between pyramidal neurons (PNs) and a menagerie of inhibitory interneuron types. A key feature distinguishing interneuron types is the spatial distribution of their synaptic contacts onto PNs, but the location-dependent effects of inhibition are mostly unknown, especially under conditions involving active dendritic responses. We studied the effect of somatic vs. dendritic inhibition on local spike generation in basal dendrites of layer 5 PNs both in neocortical slices and in simple and detailed compartmental models, with equivalent results: somatic inhibition divisively suppressed the amplitude of dendritic spikes recorded at the soma while minimally affecting dendritic spike thresholds. In contrast, distal dendritic inhibition raised dendritic spike thresholds while minimally affecting their amplitudes. On-the-path dendritic inhibition modulated both the gain and threshold of dendritic spikes depending on its distance from the spike initiation zone. Our findings suggest that cortical circuits could assign different mixtures of gain vs. threshold inhibition to different neural pathways, and thus tailor their local computations, by managing their relative activation of soma- vs. dendrite-targeting interneurons.

[1]  Bartlett W. Mel,et al.  J4 at Sweet 16: A New Wrinkle? , 2007, Neural Computation.

[2]  J Rinzel,et al.  Branch input resistance and steady attenuation for input to one branch of a dendritic neuron model. , 1973, Biophysical journal.

[3]  Evan S. Schaffer,et al.  Inhibitory Stabilization of the Cortical Network Underlies Visual Surround Suppression , 2009, Neuron.

[4]  P. Somogyi,et al.  Fast IPSPs elicited via multiple synaptic release sites by different types of GABAergic neurone in the cat visual cortex. , 1997, The Journal of physiology.

[5]  P. Somogyi,et al.  Salient features of synaptic organisation in the cerebral cortex 1 Published on the World Wide Web on 3 March 1998. 1 , 1998, Brain Research Reviews.

[6]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[7]  Terrence J. Sejnowski,et al.  Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism , 1994, Journal of Computational Neuroscience.

[8]  Idan Segev,et al.  Methods in Neuronal Modeling , 1988 .

[9]  G. Tamás,et al.  Excitatory Effect of GABAergic Axo-Axonic Cells in Cortical Microcircuits , 2006, Science.

[10]  Patrick A. Shoemaker,et al.  Neural bistability and amplification mediated by NMDA receptors: Analysis of stationary equations , 2011, Neurocomputing.

[11]  S. Prescott,et al.  Gain control of firing rate by shunting inhibition: Roles of synaptic noise and dendritic saturation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[12]  B. Connors,et al.  Regenerative activity in apical dendrites of pyramidal cells in neocortex. , 1993, Cerebral cortex.

[13]  R. Silver,et al.  Shunting Inhibition Modulates Neuronal Gain during Synaptic Excitation , 2003, Neuron.

[14]  A. Polsky,et al.  Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study , 2007, Nature Neuroscience.

[15]  Brent Doiron,et al.  Deterministic Multiplicative Gain Control with Active Dendrites , 2005, The Journal of Neuroscience.

[16]  B. Connors,et al.  Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor‐mediated responses in neocortex of rat and cat. , 1988, The Journal of physiology.

[17]  F. Karube,et al.  Axon Branching and Synaptic Bouton Phenotypes in GABAergic Nonpyramidal Cell Subtypes , 2004, The Journal of Neuroscience.

[18]  A. Destexhe Kinetic Models of Synaptic Transmission , 1997 .

[19]  Bruce R. Blazar,et al.  Dendritic Discrimination of Temporal Input Sequences in Cortical Neurons , 2010 .

[20]  Yitzhak Schiller,et al.  NMDA receptor-mediated dendritic spikes and coincident signal amplification , 2001, Current Opinion in Neurobiology.

[21]  Nace L. Golding,et al.  Dendritic Sodium Spikes Are Variable Triggers of Axonal Action Potentials in Hippocampal CA1 Pyramidal Neurons , 1998, Neuron.

[22]  G. Tamás,et al.  Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons , 2011, Proceedings of the National Academy of Sciences.

[23]  Frances S. Chance,et al.  Gain Modulation from Background Synaptic Input , 2002, Neuron.

[24]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[25]  A. Burkhalter Many Specialists for Suppressing Cortical Excitation , 2008, Front. Neurosci..

[26]  Multiplying two numbers together in your head is a difficult task if you did not learn multiplication tables as a child. On the face of it, this is somewhat surprising given the remarkable power of the brain to perform , 2010 .

[27]  Bartlett W. Mel,et al.  Binocular disparity tuning in cortical '“complex”' cells: yet another role for intradendritic computation? , 1998 .

[28]  Beat Lutz,et al.  Synaptic Integration in Tuft Dendrites of Layer 5 Pyramidal Neurons : A New Unifying Principle , 2009 .

[29]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Christof Koch,et al.  Shunting Inhibition Does Not Have a Divisive Effect on Firing Rates , 1997, Neural Computation.

[31]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[32]  James L. McClelland,et al.  Distributed memory and the representation of general and specific information. , 1985, Journal of experimental psychology. General.

[33]  S. Antic,et al.  Initiation of Sodium Spikelets in Basal Dendrites of Neocortical Pyramidal Neurons , 2005, The Journal of Membrane Biology.

[34]  G. Dubé,et al.  High-resolution iontophoresis for single-synapse stimulation , 2002, Journal of Neuroscience Methods.

[35]  Bartlett W. Mel,et al.  Location-Dependent Excitatory Synaptic Interactions in Pyramidal Neuron Dendrites , 2012, PLoS Comput. Biol..

[36]  T. Poggio,et al.  Retinal ganglion cells: a functional interpretation of dendritic morphology. , 1982, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[37]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[38]  A. Losonczy,et al.  Regulation of neuronal input transformations by tunable dendritic inhibition , 2012, Nature Neuroscience.

[39]  Guosong Liu,et al.  Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites , 2004, Nature Neuroscience.

[40]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[41]  C. Stevens,et al.  Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  Jackie Schiller,et al.  Spatiotemporally graded NMDA spike/plateau potentials in basal dendrites of neocortical pyramidal neurons. , 2008, Journal of neurophysiology.

[43]  Paul A. Rhodes,et al.  The Properties and Implications of NMDA Spikes in Neocortical Pyramidal Cells , 2006, The Journal of Neuroscience.

[44]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[45]  A. Polsky,et al.  Submillisecond Precision of the Input-Output Transformation Function Mediated by Fast Sodium Dendritic Spikes in Basal Dendrites of CA1 Pyramidal Neurons , 2003, The Journal of Neuroscience.

[46]  D. Whitteridge,et al.  An intracellular analysis of the visual responses of neurones in cat visual cortex. , 1991, The Journal of physiology.

[47]  J. Rothman,et al.  Synaptic depression enables neuronal gain control , 2009, Nature.

[48]  Judit K. Makara,et al.  Compartmentalized dendritic plasticity and input feature storage in neurons , 2008, Nature.

[49]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[50]  Y. Dan,et al.  An arithmetic rule for spatial summation of excitatory and inhibitory inputs in pyramidal neurons , 2009, Proceedings of the National Academy of Sciences.

[51]  Rafael Yuste,et al.  Dendritic spines and linear networks , 2004, Journal of Physiology-Paris.

[52]  P. Goldman-Rakic,et al.  Division of labor among distinct subtypes of inhibitory neurons in a cortical microcircuit of working memory. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[53]  M. Scanziani,et al.  How Inhibition Shapes Cortical Activity , 2011, Neuron.

[54]  G. Stuart,et al.  Excitatory Actions of GABA in the Cortex , 2003, Neuron.

[55]  J. Magee,et al.  On the Initiation and Propagation of Dendritic Spikes in CA1 Pyramidal Neurons , 2004, The Journal of Neuroscience.

[56]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[57]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[58]  Bartlett W. Mel,et al.  A model for intradendritic computation of binocular disparity , 2000, Nature Neuroscience.

[59]  Wen-Liang L Zhou,et al.  The decade of the dendritic NMDA spike , 2010, Journal of neuroscience research.

[60]  F. Krasne,et al.  Evidence for a computational distinction between proximal and distal neuronal inhibition. , 1992, Science.

[61]  M. Häusser,et al.  Synaptic Integration Gradients in Single Cortical Pyramidal Cell Dendrites , 2011, Neuron.

[62]  Bartlett W. Mel,et al.  Arithmetic of Subthreshold Synaptic Summation in a Model CA1 Pyramidal Cell , 2003, Neuron.

[63]  Peter Somogyi,et al.  Interneurons hyperpolarize pyramidal cells along their entire somatodendritic axis , 2009, Nature Neuroscience.

[64]  Bartlett W. Mel,et al.  Translation-Invariant Orientation Tuning in Visual “Complex” Cells Could Derive from Intradendritic Computations , 1998, The Journal of Neuroscience.