Projection methods for large Lyapunov matrix equations

[1]  R. A. Smith,et al.  Matrix calculations for Liapunov quadratic forms , 1966 .

[2]  C. S. Lu Solution of the matrix equation AX+XB = C , 1971 .

[3]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[4]  R. Hartwig,et al.  Resultants and the Solution of $AX - XB = - C$ , 1972 .

[5]  C. Loan The Sensitivity of the Matrix Exponential , 1977 .

[6]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[7]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[8]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[9]  Shankar P. Bhattacharyya,et al.  Controllability, observability and the solution of AX - XB = C , 1981 .

[10]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[11]  Y. Saad,et al.  Numerical solution of large Lyapunov equations , 1989 .

[12]  M. A. Kaashoek,et al.  Signal processing, scattering and operator theory, and numerical methods , 1990 .

[13]  K. Glover,et al.  A characterization of all solutions to the four block general distance problem , 1991 .

[14]  Eugene L. Wachspress,et al.  Solution of lyapunov equations by alternating direction implicit iteration , 1991 .

[15]  L. Reichel,et al.  Krylov-subspace methods for the Sylvester equation , 1992 .

[16]  M. Sadkane Block-Arnoldi and Davidson methods for unsymmetric large eigenvalue problems , 1993 .

[17]  Daniel Boley Krylov space methods on state-space control models , 1994 .

[18]  I. Jaimoukha,et al.  Krylov subspace methods for solving large Lyapunov equations , 1994 .

[19]  Imad M. Jaimoukha,et al.  Oblique Production Methods for Large Scale Model Reduction , 1995, SIAM J. Matrix Anal. Appl..

[20]  V. Simoncini,et al.  Convergence properties of block GMRES and matrix polynomials , 1996 .

[21]  Frank Wang,et al.  An efficient Lyapunov equation-based approach for generating reduced-order models of interconnect , 1999, DAC '99.

[22]  H. Sadok,et al.  Global FOM and GMRES algorithms for matrix equations , 1999 .

[23]  Thilo Penzl,et al.  A Cyclic Low-Rank Smith Method for Large Sparse Lyapunov Equations , 1998, SIAM J. Sci. Comput..

[24]  P. Dooren Gramian based model reduction of large-scale dynamical systems , 2000 .

[25]  Danny C. Sorensen,et al.  Projection Methods for Balanced Model Reduction , 2001 .

[26]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[27]  Enrique S. Quintana-Ortí,et al.  Solving stable generalized Lyapunov equations with the matrix sign function , 1999, Numerical Algorithms.

[28]  Khalide Jbilou,et al.  Block Krylov Subspace Methods for Solving Large Sylvester Equations , 2002, Numerical Algorithms.