Staff Scheduling with Particle Swarm Optimisation and Evolution Strategies

The current paper uses a scenario from logistics to show that modern heuristics, and in particular particle swarm optimization (PSO) can significantly add to the improvement of staff scheduling in practice. Rapid, sub-daily planning, which is the focus of our research offers considerable productivity reserves for companies but also creates complex challenges for the planning software.

[1]  Günter Rudolph,et al.  An Evolutionary Algorithm for Integer Programming , 1994, PPSN.

[2]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[3]  Kalyan Veeramachaneni,et al.  Optimization Using Particle Swarms with Near Neighbor Interactions , 2003, GECCO.

[4]  Jeffrey Horn,et al.  Handbook of evolutionary computation , 1997 .

[5]  Andreas T. Ernst,et al.  An Annotated Bibliography of Personnel Scheduling and Rostering , 2004, Ann. Oper. Res..

[6]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[7]  Lam Thu Bui,et al.  Success in Evolutionary Computation , 2008 .

[8]  Greet Vanden Berghe,et al.  An advanced model and novel meta-heuristic solution methods to personnel scheduling in healthcare , 2002 .

[9]  Jirí Benes,et al.  On neural networks , 1990, Kybernetika.

[10]  Reinhard Männer,et al.  Parallel Problem Solving from Nature — PPSN III , 1994, Lecture Notes in Computer Science.

[11]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[12]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[13]  James M. Tien,et al.  On Manpower Scheduling Algorithms , 1982 .

[14]  Kalyan Veeramachaneni,et al.  Probabilistically Driven Particle Swarms for Optimization of Multi Valued Discrete Problems : Design and Analysis , 2007, 2007 IEEE Swarm Intelligence Symposium.

[15]  Volker Nissen,et al.  Survivable Network Design with an Evolution Strategy , 2008 .

[16]  Amnon Meisels,et al.  Modelling and Solving Employee Timetabling Problems , 2003, Annals of Mathematics and Artificial Intelligence.

[17]  Michael N. Vrahatis,et al.  Recent approaches to global optimization problems through Particle Swarm Optimization , 2002, Natural Computing.

[18]  Mehmet Fatih Tasgetiren,et al.  Particle swarm optimization algorithm for single machine total weighted tardiness problem , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[19]  Shu-Chuan Chu,et al.  Timetable Scheduling Using Particle Swarm Optimization , 2006, First International Conference on Innovative Computing, Information and Control - Volume I (ICICIC'06).

[20]  Ivo Blöchliger,et al.  Modeling staff scheduling problems. A tutorial , 2004, Eur. J. Oper. Res..

[21]  Mohamed A. El-Sharkawi,et al.  Fundamentals of Particle Swarm Optimization Techniques , 2008 .

[22]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.