Thirteen limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms

[1]  Maoan Han,et al.  On the bifurcation of double homoclinic loops of a cubic system , 2008 .

[2]  Gheorghe Tigan,et al.  Thirteen limit cycles for a class of Hamiltonian systems under seven-order perturbed terms , 2007 .

[3]  Yonghui Xia,et al.  The number of limit cycles of cubic Hamiltonian system with perturbation , 2006 .

[4]  Moses O. Tadé,et al.  The Number and Distributions of Limit Cycles for a Class of Quintic Near-Hamiltonian Systems , 2006, Comput. Math. Appl..

[5]  Moses O. Tadé,et al.  On the zeros of the Abelian integrals for a class of Liénard systems , 2006 .

[6]  Yuan Yuan,et al.  Analysis on limit cycles of Zq-equivariant polynomial vector fields with degree 3 or 4☆ , 2006 .

[7]  Tonghua Zhang,et al.  Bifurcations of limit cycles in a cubic system with cubic perturbations , 2006, Appl. Math. Comput..

[8]  Tonghua Zhang,et al.  Perturbation from an asymmetric cubic Hamiltonian , 2005 .

[9]  Pei Yu,et al.  Small limit cycles bifurcating from fine focus points in cubic order Z2-equivariant vector fields , 2005 .

[10]  Tonghua Zhang,et al.  Bifurcations of limit cycles in a cubic system , 2004 .

[11]  Pei Yu,et al.  A Study on the Existence of Limit Cycles of a Planar System with Third-Degree Polynomials , 2004, Int. J. Bifurc. Chaos.

[12]  Tao Jiang,et al.  The Same Distribution of Limit Cycles in Five perturbed cubic Hamiltonian Systems , 2003, Int. J. Bifurc. Chaos.

[13]  Jibin Li,et al.  Hilbert's 16th Problem and bifurcations of Planar Polynomial Vector Fields , 2003, Int. J. Bifurc. Chaos.

[14]  Xiaochun Hong,et al.  Fourteen limit cycles in a cubic Hamiltonian system with nine-order perturbed term , 2002 .

[15]  Jibin Li,et al.  Investigations of bifurcations of Limit Cycles in Z2-Equivariant Planar Vector Fields of Degree 5 , 2002, Int. J. Bifurc. Chaos.

[16]  Zhujun Jing,et al.  Bifurcation set and distribution of limit cycles for a class of cubic Hamiltonian system with higher-order perturbed terms , 2000 .

[17]  Bambi Hu,et al.  Bifurcation Sets and Distributions of Limit Cycles in a Hamiltonian System Approaching the Principal Deformation of a Z4-FIELD , 1995 .

[18]  L. Zhengrong GLOBAL AND LOCAL BIFURCATION IN PERTURBATIONS OF NON-SYMMETRY AND SYMMETRY OF HAMILTONIAN SYSTEM , 1995 .

[19]  T. R. Blows,et al.  Bifurcation of Limit Cycles from Centers and Separatrix Cycles of Planar Analytic Systems , 1994, SIAM Rev..

[20]  Jibin Li,et al.  Bifurcation set and limit cycles forming compound eyes in a perturbed Hamiltonian system , 1991 .

[21]  V. I. Arnol'd,et al.  Loss of stability of self-oscillations close to resonance and versal deformations of equivariant vector fields , 1977 .