Arrangements on Parametric Surfaces I: General Framework and Infrastructure

We introduce a framework for the construction, maintenance, and manipulation of arrangements of curves embedded on certain two-dimensional orientable parametric surfaces in three-dimensional space. The framework applies to planes, cylinders, spheres, tori, and surfaces homeomorphic to them. We reduce the effort needed to generalize existing algorithms, such as the sweep line and zone traversal algorithms, originally designed for arrangements of bounded curves in the plane, by extensive reuse of code. We have realized our approach as the Cgal package Arrangement_on_surface_2. We define a compact and modular interface for our framework; for a given application a required small subset of the interface can be identified. Then, only this subset must be implemented. A companion paper describes concretizations for several types of surfaces and curves embedded on them, and applications. This is the first implementation of a generic algorithm that can handle arrangements on a large class of parametric surfaces.

[1]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[2]  Kurt Mehlhorn,et al.  Infimaximal Frames: A Technique for Making Lines Look Like Segments , 2003, Int. J. Comput. Geom. Appl..

[3]  Micha Sharir,et al.  Arrangements and Their Applications , 2000, Handbook of Computational Geometry.

[4]  C Haythornwaite,et al.  Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design Patterns: Elements of Reusable Object Oriented Software. New York: Addison-Wesley, 1995. , 2002 .

[6]  Jorge Stolfi,et al.  Exact Algorithms for Circles on the Sphere , 2001, Int. J. Comput. Geom. Appl..

[7]  Erik Brisson,et al.  Representing geometric structures in d dimensions: topology and order , 1989, SCG '89.

[8]  Monique Teillaud,et al.  Design of the CGAL 3D Spherical Kernel and application to arrangements of circles on a sphere , 2009, Comput. Geom..

[9]  Geert-Jan Giezeman,et al.  On the design of CGAL a computational geometry algorithms library , 2000 .

[10]  Michael Kerber,et al.  Exact and efficient 2D-arrangements of arbitrary algebraic curves , 2008, SODA '08.

[11]  Frédéric Cazals,et al.  Computing the arrangement of circles on a sphere, with applications in structural biology , 2009, Comput. Geom..

[12]  採編典藏組 Society for Industrial and Applied Mathematics(SIAM) , 2008 .

[13]  Hassan Masum,et al.  Review of Computational Geometry: Algorithms and Applications (2nd ed.) by Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf , 2000, SIGA.

[14]  Micha Sharir,et al.  Constructing Two-Dimensional Voronoi Diagrams via Divide-and-Conquer of Envelopes in Space , 2009, 2009 Sixth International Symposium on Voronoi Diagrams.

[15]  Dan Halperin,et al.  Arrangements of geodesic arcs on the sphere , 2008, SCG '08.

[16]  Anne Verroust-Blondet,et al.  Computing a canonical polygonal schema of an orientable triangulated surface , 2001, SCG '01.

[17]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[18]  Elmar Schömer,et al.  An Exact, Complete and Efficient Implementation for Computing Planar Maps of Quadric Intersection Curves * , 2005 .

[19]  Dan Halperin,et al.  Advanced programming techniques applied to Cgal's arrangement package , 2007, Comput. Geom..

[20]  Geert-Jan Giezeman,et al.  On the design of CGAL a computational geometry algorithms library , 2000, Softw. Pract. Exp..

[21]  Dan Halperin,et al.  Arrangements on Parametric Surfaces II: Concretizations and Applications , 2010, Math. Comput. Sci..

[22]  Frédéric Cazals,et al.  Computing the exact arrangement of circles on a sphere, with applications in structural biology: video , 2007, SCG '07.

[23]  Michael Hemmer,et al.  Exact computation of the adjacency graph of an arrangement of quadrics , 2007 .

[24]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[25]  Dan Halperin,et al.  A perturbation scheme for spherical arrangements with application to molecular modeling , 1997, SCG '97.

[26]  Kurt Mehlhorn,et al.  LEDA: a platform for combinatorial and geometric computing , 1997, CACM.

[27]  Michael Kerber,et al.  Exact arrangements on tori and Dupin cyclides , 2008, SPM '08.

[28]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[29]  Victor J. Milenkovic,et al.  An Approximate Arrangement Algorithm for Semi-Algebraic Curves , 2007, Int. J. Comput. Geom. Appl..

[30]  Michal Meyerovitch,et al.  Robust, Generic and Efficient Construction of Envelopes of Surfaces in Three-Dimensional Spaces , 2006, ESA.

[31]  Thomas Ottmann,et al.  Algorithms for Reporting and Counting Geometric Intersections , 1979, IEEE Transactions on Computers.

[32]  Matthew Harold Austern,et al.  Generic programming and the STL , 1998 .

[33]  Kurt Mehlhorn,et al.  Sweeping and Maintaining Two-Dimensional Arrangements on Surfaces: A First Step , 2007, ESA.

[34]  Jean-Daniel Boissonnat,et al.  Effective computational geometry for curves and surfaces , 2006 .

[35]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[36]  Jorge Stolfi,et al.  Exact algorithms for circles on the sphere , 1998, SCG '98.