Optimal model reduction for non-rational functions

We survey several algorithm for H2 optimal model reduction with a particular emphasis on the case of approximating irrational functions. Irrational transfer functions arise for systems modeled by partial differential equations or delay differential equations. We then compare the performance of these algorithms on two examples of irrational transfer functions: one arising from a heat equation and one arising from a beam equation.

[1]  Ruth F. Curtain,et al.  Survey paper: Transfer functions of distributed parameter systems: A tutorial , 2009 .

[2]  Michela Redivo-Zaglia,et al.  A program for solving the L2 reduced-order model problem with fixed denominator degree , 1995, Numerical Algorithms.

[3]  S. Gugercin,et al.  Realization-independent H 2-approximation , 2012 .

[4]  Peter Kulchyski and , 2015 .

[5]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[6]  U. Viaro,et al.  Rational L/sub 2/ approximation: a non-gradient algorithm , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[7]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[8]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[9]  Serkan Gugercin,et al.  H2 Model Reduction for Large-Scale Linear Dynamical Systems , 2008, SIAM J. Matrix Anal. Appl..

[10]  John T. Spanos,et al.  A new algorithm for L2 optimal model reduction , 1992, Autom..

[11]  Serkan Gugercin,et al.  Convergence of the Iterative Rational Krylov Algorithm , 2011, Syst. Control. Lett..

[12]  T. N. Lucas Optimal model reduction by multipoint Padé approximation , 1993 .

[13]  C. Hwang,et al.  A new two-step iterative method for optimal reduction of linear SISO systems , 1996 .

[14]  Feng Wan,et al.  A fast adaptive model reduction method based on Takenaka-Malmquist systems , 2012, Syst. Control. Lett..

[15]  R. Langer Interpolation and Approximation by Rational Functions in the Complex Domain , 1937 .

[16]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[17]  L. Meier,et al.  Approximation of linear constant systems , 1967, IEEE Transactions on Automatic Control.