Multi-atlas label fusion with random local binary pattern features: Application to hippocampus segmentation

[1]  Yanrong Guo,et al.  Multi-class multimodal semantic segmentation with an improved 3D fully convolutional networks , 2020, Neurocomputing.

[2]  Dinggang Shen,et al.  Dilated Dense U-Net for Infant Hippocampus Subfield Segmentation , 2019, Front. Neuroinform..

[3]  Qianjin Feng,et al.  Hippocampus Segmentation Based on Iterative Local Linear Mapping With Representative and Local Structure-Preserved Feature Embedding , 2019, IEEE Transactions on Medical Imaging.

[4]  Petros Daras,et al.  Fast and Precise Hippocampus Segmentation Through Deep Convolutional Neural Network Ensembles and Transfer Learning , 2019, Neuroinformatics.

[5]  Andreas K. Maier,et al.  Dilated Deeply Supervised Networks for Hippocampus Segmentation in MRI , 2019, Bildverarbeitung für die Medizin.

[6]  Kun Cheng,et al.  Hippocampal subfields segmentation in brain MR images using generative adversarial networks , 2019, Biomedical engineering online.

[7]  Nassir Navab,et al.  QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy , 2018, NeuroImage.

[8]  Duncan Fyfe Gillies,et al.  Near Real-time Hippocampus Segmentation Using Patch-based Canonical Neural Network , 2018, ArXiv.

[9]  Francesco Amato,et al.  Multi atlas based segmentation: should we prefer the best atlas group over the group of best atlases? , 2018, Physics in medicine and biology.

[10]  Márcio Sarroglia Pinho,et al.  Atlas selection for hippocampus segmentation: Relevance evaluation of three meta-information parameters , 2018, Comput. Biol. Medicine.

[11]  Oualid M. Benkarim,et al.  Learning non‐linear patch embeddings with neural networks for label fusion , 2018, Medical Image Anal..

[12]  Yong Fan,et al.  A deep learning model integrating FCNNs and CRFs for brain tumor segmentation , 2017, Medical Image Anal..

[13]  H. Fukuda,et al.  Segmentation of the hippocampus by transferring algorithmic knowledge for large cohort processing , 2018, Medical Image Anal..

[14]  Jun Zhang,et al.  Multi-task neural networks for joint hippocampus segmentation and clinical score regression , 2018, Multimedia Tools and Applications.

[15]  Pierrick Coupé,et al.  Hippocampus Subfield Segmentation Using a Patch-Based Boosted Ensemble of Autocontext Neural Networks , 2017, Patch-MI@MICCAI.

[16]  Tao Sun,et al.  Accurate and Consistent Hippocampus Segmentation Through Convolutional LSTM and View Ensemble , 2017, MLMI@MICCAI.

[17]  T. Procházka,et al.  Left hippocampus sparing whole brain radiotherapy (WBRT): A planning study. , 2017, Biomedical papers of the Medical Faculty of the University Palacky, Olomouc, Czechoslovakia.

[18]  Azar Zandifar,et al.  A comparison of accurate automatic hippocampal segmentation methods , 2017, NeuroImage.

[19]  Qianjin Feng,et al.  Hippocampus Segmentation Based on Local Linear Mapping , 2017, Scientific Reports.

[20]  Jundong Liu,et al.  Hippocampus segmentation through multi-view ensemble ConvNets , 2017, 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017).

[21]  Daoqiang Zhang,et al.  Robust multi-atlas label propagation by deep sparse representation , 2017, Pattern Recognit..

[22]  G Sharp,et al.  SU-C-BRA-04: Automated Segmentation of Head-And-Neck CT Images for Radiotherapy Treatment Planning Via Multi-Atlas Machine Learning (MAML). , 2016, Medical physics.

[23]  Christos Davatzikos,et al.  MUSE: MUlti-atlas region Segmentation utilizing Ensembles of registration algorithms and parameters, and locally optimal atlas selection , 2016, NeuroImage.

[24]  D. Louis Collins,et al.  An Optimized PatchMatch for multi-scale and multi-feature label fusion , 2016, NeuroImage.

[25]  Yong Fan,et al.  Metric Learning for Multi-atlas based Segmentation of Hippocampus , 2016, Neuroinformatics.

[26]  Dario Pompili,et al.  Comparative performance evaluation of automated segmentation methods of hippocampus from magnetic resonance images of temporal lobe epilepsy patients. , 2016, Medical physics.

[27]  Michaël Sdika Enhancing atlas based segmentation with multiclass linear classifiers. , 2015, Medical physics.

[28]  Yuankai Huo,et al.  Multi-atlas learner fusion: An efficient segmentation approach for large-scale data , 2015, Medical Image Anal..

[29]  A Tateo,et al.  Hippocampal unified multi-atlas network (HUMAN): protocol and scale validation of a novel segmentation tool , 2015, Physics in medicine and biology.

[30]  Xin-Wei Li,et al.  Local manifold learning for multiatlas segmentation: application to hippocampal segmentation in healthy population and Alzheimer's disease , 2015, CNS neuroscience & therapeutics.

[31]  Yong Fan,et al.  Random local binary pattern based label learning for multi-atlas segmentation , 2015, Medical Imaging.

[32]  D. Louis Collins,et al.  Training labels for hippocampal segmentation based on the EADC-ADNI harmonized hippocampal protocol , 2015, Alzheimer's & Dementia.

[33]  Mert R. Sabuncu,et al.  Multi-atlas segmentation of biomedical images: A survey , 2014, Medical Image Anal..

[34]  Daniel Rueckert,et al.  Multi-atlas segmentation with augmented features for cardiac MR images , 2015, Medical Image Anal..

[35]  Daniel Rueckert,et al.  Robustness of automated hippocampal volumetry across magnetic resonance field strengths and repeat images , 2014, Alzheimer's & Dementia.

[36]  Tianzi Jiang,et al.  Local label learning (LLL) for subcortical structure segmentation: Application to hippocampus segmentation , 2014, Human brain mapping.

[37]  Guoqing Liu,et al.  Prostate segmentation based on variant scale patch and local independent projection , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[38]  Xudong Jiang,et al.  Noise-Resistant Local Binary Pattern With an Embedded Error-Correction Mechanism , 2013, IEEE Transactions on Image Processing.

[39]  Xiao Han Learning-Boosted Label Fusion for Multi-atlas Auto-Segmentation , 2013, MLMI.

[40]  Daniel Rueckert,et al.  Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling , 2013, NeuroImage.

[41]  Paul A. Yushkevich,et al.  Multi-Atlas Segmentation with Joint Label Fusion , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Bennett A Landman,et al.  Non-local statistical label fusion for multi-atlas segmentation , 2013, Medical Image Anal..

[43]  Simon K. Warfield,et al.  Estimating A Reference Standard Segmentation With Spatially Varying Performance Parameters: Local MAP STAPLE , 2012, IEEE Transactions on Medical Imaging.

[44]  Bennett A. Landman,et al.  Formulating Spatially Varying Performance in the Statistical Fusion Framework , 2012, IEEE Transactions on Medical Imaging.

[45]  Colin Studholme,et al.  A Supervised Patch-Based Approach for Human Brain Labeling , 2011, IEEE Transactions on Medical Imaging.

[46]  Hamid Soltanian-Zadeh,et al.  Hippocampal volumetry for lateralization of temporal lobe epilepsy: Automated versus manual methods , 2011, NeuroImage.

[47]  D. Louis Collins,et al.  Patch-based segmentation using expert priors: Application to hippocampus and ventricle segmentation , 2011, NeuroImage.

[48]  Daniel Rueckert,et al.  Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy , 2009, NeuroImage.

[49]  Carlos Ortiz-de-Solorzano,et al.  Combination Strategies in Multi-Atlas Image Segmentation: Application to Brain MR Data , 2009, IEEE Transactions on Medical Imaging.

[50]  Michael Weiner,et al.  and the Alzheimer’s Disease Neuroimaging Initiative* , 2007 .

[51]  Brian B. Avants,et al.  Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain , 2008, Medical Image Anal..

[52]  Matti Pietikäinen,et al.  Face Description with Local Binary Patterns: Application to Face Recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[53]  William M. Wells,et al.  Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation , 2004, IEEE Transactions on Medical Imaging.

[54]  Torsten Rohlfing,et al.  Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains , 2004, NeuroImage.

[55]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[56]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[57]  E. DeLong,et al.  Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. , 1988, Biometrics.