Maximum Likelihood Estimation in Data-Driven Modeling and Control

Recently, various algorithms for data-driven simulation and control have been proposed based on the Willems' fundamental lemma. However, when collected data are noisy, these methods lead to ill-conditioned data-driven model structures. In this work, we present a maximum likelihood framework to obtain an optimal data-driven model, the signal matrix model, in the presence of output noise. A data compression scheme is also proposed to enable more efficient use of large datasets. Two approaches in system identification and receding horizon control are developed based on the derived optimal estimator. The first one identifies a finite impulse response model in combination with the kernel-based method. This approach improves the least-squares-based estimator with less restrictive assumptions. The second one applies the signal matrix model as the predictor in predictive control. The control performance is shown to be better than existing data-driven predictive control algorithms, especially under high noise levels. Both approaches demonstrate that the derived estimator provides a promising framework to apply data-driven algorithms to noisy data.

[1]  Panos M. Pardalos,et al.  Approximate dynamic programming: solving the curses of dimensionality , 2009, Optim. Methods Softw..

[2]  Michel Verhaegen,et al.  Fault-Tolerant Subspace Predictive Control Applied to a Boeing 747 Model , 2008 .

[3]  Elie Bienenstock,et al.  Neural Networks and the Bias/Variance Dilemma , 1992, Neural Computation.

[4]  Henrik Ohlsson,et al.  On the estimation of transfer functions, regularizations and Gaussian processes - Revisited , 2012, Autom..

[5]  D. Donoho,et al.  The Optimal Hard Threshold for Singular Values is 4 / √ 3 , 2013 .

[6]  Dieter Verbeke,et al.  Experimental Validation of a Data-Driven Step Input Estimation Method for Dynamic Measurements , 2020, IEEE Transactions on Instrumentation and Measurement.

[7]  Basil Kouvaritakis,et al.  Model Predictive Control: Classical, Robust and Stochastic , 2015 .

[8]  L.C.G.J.M. Habets,et al.  Book review: Introduction to mathematical systems theory, a behavioral approach , 2000 .

[9]  M. Moonen,et al.  On- and off-line identification of linear state-space models , 1989 .

[10]  Frank Allgöwer,et al.  Data-Driven Model Predictive Control With Stability and Robustness Guarantees , 2019, IEEE Transactions on Automatic Control.

[11]  P. M. J. V. den,et al.  Approximate realization based upon an alternative to the Hankel matrix : the Page matrix , 2004 .

[12]  M. Kanat Camlibel,et al.  From Noisy Data to Feedback Controllers: Nonconservative Design via a Matrix S-Lemma , 2022, IEEE Transactions on Automatic Control.

[13]  Michail G. Lagoudakis,et al.  Least-Squares Policy Iteration , 2003, J. Mach. Learn. Res..

[14]  Ufuk Topcu,et al.  On Controllability and Persistency of Excitation in Data-Driven Control: Extensions of Willems' Fundamental Lemma , 2021, ArXiv.

[15]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[16]  Mingzhou Yin,et al.  Design of input for data-driven simulation with Hankel and Page matrices , 2021, 2021 60th IEEE Conference on Decision and Control (CDC).

[17]  Pietro Tesi,et al.  Formulas for Data-Driven Control: Stabilization, Optimality, and Robustness , 2019, IEEE Transactions on Automatic Control.

[18]  Soosan Beheshti,et al.  Data-driven subspace predictive control: Stability and horizon tuning , 2018, J. Frankl. Inst..

[19]  Svante Gunnarsson,et al.  Iterative feedback tuning: theory and applications , 1998 .

[20]  M. Kanat Camlibel,et al.  Data Informativity: A New Perspective on Data-Driven Analysis and Control , 2019, IEEE Transactions on Automatic Control.

[21]  G. Chow Analysis and control of dynamic economic systems , 1975 .

[22]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[23]  Håkan Hjalmarsson,et al.  From experiment design to closed-loop control , 2005, Autom..

[24]  Paolo Rapisarda,et al.  Data-driven simulation and control , 2008, Int. J. Control.

[25]  John Lygeros,et al.  An Extended Kalman Filter for Data-Enabled Predictive Control , 2020, IEEE Control Systems Letters.

[26]  John Lygeros,et al.  Data-Enabled Predictive Control for Grid-Connected Power Converters , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[27]  Tianshi Chen,et al.  On kernel design for regularized LTI system identification , 2016, Autom..

[28]  John Lygeros,et al.  Regularized and Distributionally Robust Data-Enabled Predictive Control , 2019, 2019 IEEE 58th Conference on Decision and Control (CDC).

[29]  M. Kanat Camlibel,et al.  Willems’ Fundamental Lemma for State-Space Systems and Its Extension to Multiple Datasets , 2020, IEEE Control Systems Letters.

[30]  Giuseppe De Nicolao,et al.  A new kernel-based approach for linear system identification , 2010, Autom..

[31]  I. Markovsky,et al.  Identifiability in the Behavioral Setting , 2023, IEEE Transactions on Automatic Control.

[32]  Mingzhou Yin,et al.  Maximum Likelihood Signal Matrix Model for Data-Driven Predictive Control , 2020, L4DC.

[33]  Bart De Moor,et al.  A note on persistency of excitation , 2005, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[34]  Zhuo Wang,et al.  From model-based control to data-driven control: Survey, classification and perspective , 2013, Inf. Sci..

[35]  J. Willems,et al.  DATA DRIVEN SIMULATION WITH APPLICATIONS TO SYSTEM IDENTIFICATION , 2005 .

[36]  Sabine Van Huffel,et al.  Overview of total least-squares methods , 2007, Signal Process..

[37]  Michael G. Safonov,et al.  The unfalsified control concept and learning , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[38]  Benjamin Recht,et al.  A Tour of Reinforcement Learning: The View from Continuous Control , 2018, Annu. Rev. Control. Robotics Auton. Syst..

[39]  Sergio M. Savaresi,et al.  Virtual reference feedback tuning: a direct method for the design of feedback controllers , 2002, Autom..

[40]  Michel Gevers,et al.  SPC: Subspace Predictive Control , 1999 .

[41]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[42]  Biao Huang,et al.  A data driven subspace approach to predictive controller design , 2001 .

[43]  John Lygeros,et al.  Data-Enabled Predictive Control: In the Shallows of the DeePC , 2018, 2019 18th European Control Conference (ECC).