A new inverse kinematics algorithm for binary manipulators with many actuators

In this paper we present a new, and extremely fast, algorithm for the inverse kinematics of discretely actuated manipulator arms with many degrees of freedom. Our only assumption is that the arm is macroscopically serial in structure, meaning that the overall structure is a serial cascade of units with each unit having either a serial or parallel kinematic structure. Our algorithm builds on previous works in which the authors and coworkers have used the workspace density function in a breadthfirst search for solving the inverse kinematics problem. The novelty of the method presented here is that only the 'mean' of this workspace density function is used. Hence the requirement of storing a sampled version of the workspace density function (which is a function on a six-dimensional space in the case of a spatial manipulator) is circumvented. We illustrate the technique with both planar revolute and variable-geometry-truss manipulators, and briefly describe a new manipulator design for which this algorithm is applicable.

[1]  M. Shuster,et al.  Three-axis attitude determination from vector observations , 1981 .

[2]  Roger W. Brockett,et al.  Kinematic Dexterity of Robotic Mechanisms , 1994, Int. J. Robotics Res..

[3]  Bernard Roth,et al.  On the Design of Computer Controlled Manipulators , 1974 .

[4]  Xinhua Zhuang,et al.  Pose estimation from corresponding point data , 1989, IEEE Trans. Syst. Man Cybern..

[5]  F. Markley Attitude determination using vector observations and the singular value decomposition , 1988 .

[6]  James R. Wertz,et al.  Spacecraft attitude determination and control , 1978 .

[7]  J. Michael McCarthy,et al.  Introduction to theoretical kinematics , 1990 .

[8]  A.Sh. Koliskor The l-coordinate approach to the industrial robots design , 1986 .

[9]  Vijay Kumar,et al.  Metrics and Connections for Rigid-Body Kinematics , 1999, Int. J. Robotics Res..

[10]  G. Chirikjian,et al.  Engineering Applications of Noncommutative Harmonic Analysis: With Emphasis on Rotation and Motion Groups , 2000 .

[11]  Gregory S. Chirikjian,et al.  Synthesis of binary manipulators using the Fourier transform on the Euclidean Group , 1999 .

[12]  Kenneth J. Waldron,et al.  Numerical plotting of surfaces of positioning accuracy of manipulators , 1981 .

[13]  J. Angeles The Design of Isotropic Manipulator Architectures in the Presence of Redundancies , 1992 .

[14]  Vincent L. Pisacane,et al.  Fundamentals of space systems , 1994 .

[15]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[16]  P. Diaconis Group representations in probability and statistics , 1988 .

[17]  Gregory S. Chirikjian,et al.  A combinatorial approach to trajectory planning for binary manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[18]  Gregory S. Chirikjian,et al.  Kinematic Synthesis of Mechanisms and Robotic Manipulators With Binary Actuators , 1995 .

[19]  大島 康次郎,et al.  Information control problems in manufacturing technology , 1977 .

[20]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[21]  Gregory S. Chirikjian,et al.  Inverse Kinematics of Binary Manipulators Using a Continuum Model , 1997, J. Intell. Robotic Syst..

[22]  Naoya Ohta,et al.  Optimal Estimation of Three-Dimensional Rotation and Reliability Evaluation , 1998, ECCV.

[23]  J. Stuelpnagel,et al.  A Least Squares Estimate of Satellite Attitude (Grace Wahba) , 1966 .

[24]  Dibakar Sen,et al.  A discrete state perspective of manipulator workspaces , 1994 .

[25]  Kenichi Kanatani,et al.  Analysis of 3-D Rotation Fitting , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  G. Wahba A Least Squares Estimate of Satellite Attitude , 1965 .

[27]  Gregory S. Chirikjian,et al.  Efficient workspace generation for binary manipulators with many actuators , 1995, J. Field Robotics.

[28]  K. S. Arun,et al.  Least-Squares Fitting of Two 3-D Point Sets , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  C. Galletti,et al.  Metric Relations and Displacement Groups in Mechanism and Robot Kinematics , 1995 .

[30]  Gregory S. Chirikjian,et al.  Numerical convolution on the Euclidean group with applications to workspace generation , 1998, IEEE Trans. Robotics Autom..

[31]  Imme Ruth Ebert-Uphoff On the development of discretely-actuated hybrid-serial-parallel manipulators , 1998 .

[32]  Kin Hong Wong,et al.  An efficient iterative pose estimation algorithm , 1998, Image Vis. Comput..

[33]  G. Chirikjian,et al.  Metrics on Motion and Deformation of Solid Models , 1998 .

[34]  Gregory S. Chirikjian,et al.  A binary paradigm for robotic manipulators , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[35]  Joseph Duffy,et al.  End-Effector Motion Capabilities of Serial Manipulators , 1993, Int. J. Robotics Res..

[36]  Paul L. Rosin Robust pose estimation , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[37]  Gregory S. Chirikjian,et al.  Inverse kinematics of discretely actuated hyper-redundant manipulators using workspace densities , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[38]  Søren Hein,et al.  On the Estimation of Rigid Body Rotation from Noisy Data , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[39]  J. Duffy,et al.  On the Metrics of Rigid Body Displacements for Infinite and Finite Bodies , 1995 .

[40]  S. Umeyama,et al.  Least-Squares Estimation of Transformation Parameters Between Two Point Patterns , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Michael I. Miller,et al.  Hilbert-Schmidt Lower Bounds for Estimators on Matrix Lie Groups for ATR , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Gregory S. Chirikjian,et al.  Inverse kinematics of binary manipulators with applications to service robotics , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[43]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[44]  Gregory S. Chirikjian,et al.  An efficient method for computing the forward kinematics of binary manipulators , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[45]  Donald Lee Pieper The kinematics of manipulators under computer control , 1968 .

[46]  S. H. Joseph Optimal Pose Estimation in Two and Three Dimensions , 1999, Comput. Vis. Image Underst..