Accelerating the discovery of materials for clean energy in the era of smart automation

The discovery and development of novel materials in the field of energy are essential to accelerate the transition to a low-carbon economy. Bringing recent technological innovations in automation, robotics and computer science together with current approaches in chemistry, materials synthesis and characterization will act as a catalyst for revolutionizing traditional research and development in both industry and academia. This Perspective provides a vision for an integrated artificial intelligence approach towards autonomous materials discovery, which, in our opinion, will emerge within the next 5 to 10 years. The approach we discuss requires the integration of the following tools, which have already seen substantial development to date: high-throughput virtual screening, automated synthesis planning, automated laboratories and machine learning algorithms. In addition to reducing the time to deployment of new materials by an order of magnitude, this integrated approach is expected to lower the cost associated with the initial discovery. Thus, the price of the final products (for example, solar panels, batteries and electric vehicles) will also decrease. This in turn will enable industries and governments to meet more ambitious targets in terms of reducing greenhouse gas emissions at a faster pace.The discovery and development of advanced materials are imperative for the clean energy sector. We envision that a closed-loop approach, which combines high-throughput computation, artificial intelligence and advanced robotics, will sizeably reduce the time to deployment and the costs associated with materials development.

[1]  Teuku Meurah Indra Mahlia,et al.  A review of available methods and development on energy storage; technology update , 2014 .

[2]  Dennis Sheberla,et al.  A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity , 2017 .

[3]  Guanggen Zeng,et al.  Development of Combinatorial Pulsed Laser Deposition for Expedited Device Optimization in CdTe/CdS Thin-Film Solar Cells , 2016 .

[4]  G. Hubler,et al.  Pulsed Laser Deposition of Thin Films , 2003, Handbook of Laser Technology and Applications.

[5]  John Kitchin,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces , 2011 .

[6]  J. Langer Models of Pattern Formation in First-Order Phase Transitions , 1986 .

[7]  Claudio Battilocchio,et al.  Machine‐Assisted Organic Synthesis , 2015, Angewandte Chemie.

[8]  M. Maiwald,et al.  Quantitative high-resolution on-line NMR spectroscopy in reaction and process monitoring. , 2004, Journal of magnetic resonance.

[9]  Luisa F. Cabeza,et al.  Heating and cooling energy trends and drivers in buildings , 2015 .

[10]  Rahul Rao,et al.  Autonomy in materials research: a case study in carbon nanotube growth , 2016 .

[11]  Alán Aspuru-Guzik,et al.  Lead candidates for high-performance organic photovoltaics from high-throughput quantum chemistry – the Harvard Clean Energy Project , 2014 .

[12]  J. Reynolds,et al.  Color control in pi-conjugated organic polymers for use in electrochromic devices. , 2010, Chemical reviews.

[13]  Christa Marshall,et al.  In Switzerland, a giant new machine is sucking carbon directly from the air , 2017 .

[14]  Leroy Cronin,et al.  An autonomous organic reaction search engine for chemical reactivity , 2017, Nature Communications.

[15]  Lei Wang,et al.  Li−Fe−P−O2 Phase Diagram from First Principles Calculations , 2008 .

[16]  Philipp Rudolf von Rohr,et al.  Interplay between Reaction and Phase Behaviour in Carbon Dioxide Hydrogenation to Methanol. , 2017, ChemSusChem.

[17]  Nirupama U. Pujare,et al.  Electrochromic Effects on Heptylviologen Incorporated within a Solid Polymer Electrolyte Cell , 1986 .

[18]  G. Olah Beyond oil and gas: the methanol economy. , 2006, Angewandte Chemie.

[19]  Paul Raccuglia,et al.  Machine-learning-assisted materials discovery using failed experiments , 2016, Nature.

[20]  Li Li,et al.  Bypassing the Kohn-Sham equations with machine learning , 2016, Nature Communications.

[21]  Saad Mekhilef,et al.  Performance, materials and coating technologies of thermochromic thin films on smart windows , 2013 .

[22]  Marwin H. S. Segler,et al.  Neural-Symbolic Machine Learning for Retrosynthesis and Reaction Prediction. , 2017, Chemistry.

[23]  Martin D. Burke,et al.  Erratum: Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction [Nature Chemistry 6, 484-491 (2014), 10.1038/nchem.1975] , 2014 .

[24]  Alexei Lapkin,et al.  Automatic discovery and optimization of chemical processes , 2015 .

[25]  J. Nørskov,et al.  CatApp: a web application for surface chemistry and heterogeneous catalysis. , 2012, Angewandte Chemie.

[26]  Wen Liu,et al.  Research data supporting "Large scale computational screening and experimental discovery of novel materials for high temperature CO2 capture" , 2016 .

[27]  Regina Barzilay,et al.  Prediction of Organic Reaction Outcomes Using Machine Learning , 2017, ACS central science.

[28]  S. Ong,et al.  New opportunities for materials informatics: Resources and data mining techniques for uncovering hidden relationships , 2016 .

[29]  Doron Aurbach,et al.  Promise and reality of post-lithium-ion batteries with high energy densities , 2016 .

[30]  E. Garnsey,et al.  Commercializing Generic Technology: The Case of Advanced Materials Ventures , 2005 .

[31]  Sandeep K. Sood,et al.  An Energy-Efficient Architecture for the Internet of Things (IoT) , 2017, IEEE Systems Journal.

[32]  Zachary W. Ulissi,et al.  To address surface reaction network complexity using scaling relations machine learning and DFT calculations , 2017, Nature Communications.

[33]  Roy G. Gordon,et al.  Alkaline quinone flow battery , 2015, Science.

[34]  Yves Grohens,et al.  Nano-fibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties , 2015 .

[35]  Tam Mayeshiba,et al.  High-throughput ab-initio dilute solute diffusion database , 2016, Scientific Data.

[36]  Mikkel Jørgensen,et al.  Ultra fast and parsimonious materials screening for polymer solar cells using differentially pumped slot-die coating. , 2010, ACS applied materials & interfaces.

[37]  Jonathan Grizou,et al.  Human versus Robots in the Discovery and Crystallization of Gigantic Polyoxometalates , 2017, Angewandte Chemie.

[38]  Giorgos Borboudakis,et al.  Chemically intuited, large-scale screening of MOFs by machine learning techniques , 2017, npj Computational Materials.

[39]  Rattan Lal,et al.  Carbon sequestration in soil. , 2008 .

[40]  Eliza Northrop,et al.  Examining the Alignment between the Intended Nationally Determined Contributions and Sustainable Development Goals , 2016 .

[41]  Malte Behrens,et al.  Heterogeneous catalysis of CO₂ conversion to methanol on copper surfaces. , 2014, Angewandte Chemie.

[42]  Eric R. Homer,et al.  Discovering the building blocks of atomic systems using machine learning: application to grain boundaries , 2017, npj Computational Materials.

[43]  Jaafar A. El-Awady,et al.  Unravelling the physics of size-dependent dislocation-mediated plasticity , 2015, Nature Communications.

[44]  Anubhav Jain,et al.  Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations , 2011 .

[45]  Susan A. Bourne,et al.  Unravelling chromism in metal–organic frameworks , 2017 .

[46]  David L. McDowell,et al.  Vision for Data and Informatics in the Future Materials Innovation Ecosystem , 2016, JOM.

[47]  Leroy Cronin,et al.  Digitization of multistep organic synthesis in reactionware for on-demand pharmaceuticals , 2018, Science.

[48]  Sebastian Thrun,et al.  Dermatologist-level classification of skin cancer with deep neural networks , 2017, Nature.

[49]  Marco Buongiorno Nardelli,et al.  Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids , 2016, 1611.05714.

[50]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[51]  Alán Aspuru-Guzik,et al.  Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC) , 2017 .

[52]  Alán Aspuru-Guzik,et al.  PHOENICS: A universal deep Bayesian optimizer , 2018, 1801.01469.

[53]  Luke E K Achenie,et al.  Machine-Learning-Augmented Chemisorption Model for CO2 Electroreduction Catalyst Screening. , 2015, The journal of physical chemistry letters.

[54]  Ichiro Takeuchi,et al.  Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies , 2017 .

[55]  Jürgen H. Werner,et al.  Flexible solar cells for clothing , 2006 .

[56]  Piotr Dittwald,et al.  Computer-Assisted Synthetic Planning: The End of the Beginning , 2016 .

[57]  Jens K. Nørskov,et al.  Electronic origin of the surface reactivity of transition-metal-doped TiO2(110) , 2013 .

[58]  Mircea Dincă,et al.  Transparent-to-Dark Electrochromic Behavior in Naphthalene-Diimide-Based Mesoporous MOF-74 Analogs , 2016 .

[59]  M. Dresselhaus,et al.  Perspectives on thermoelectrics: from fundamentals to device applications , 2012 .

[60]  Andreas Henemann,et al.  BIPV: Built-in solar energy , 2008 .

[61]  Diego A. Gómez-Gualdrón,et al.  Computational Design of Metal–Organic Frameworks Based on Stable Zirconium Building Units for Storage and Delivery of Methane , 2014 .

[62]  Gianni De Fabritiis,et al.  KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks , 2018, J. Chem. Inf. Model..

[63]  Shazim Ali Memon,et al.  Phase change materials integrated in building walls: A state of the art review , 2014 .

[64]  Ji-Bo Wang,et al.  The Proximal Lilly Collection: Mapping, Exploring and Exploiting Feasible Chemical Space , 2016, J. Chem. Inf. Model..

[65]  S. Y. Wong,et al.  On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system , 2016, Science.

[66]  Frank Tsui,et al.  Combinatorial molecular beam epitaxy synthesis and characterization of magnetic alloys , 2002 .

[67]  Kenta Hongo,et al.  Bayesian molecular design with a chemical language model , 2017, Journal of Computer-Aided Molecular Design.

[68]  Gurpur Rakesh D. Prabhu,et al.  The dawn of unmanned analytical laboratories , 2017 .

[69]  Xiao-Jiang Feng,et al.  Why is chemical synthesis and property optimization easier than expected? , 2011, Physical chemistry chemical physics : PCCP.

[70]  M Davenport HAVING A BLAST WITH COLD ATOMS , 2016 .

[71]  Thierry Kogej,et al.  Generating Focused Molecule Libraries for Drug Discovery with Recurrent Neural Networks , 2017, ACS central science.

[72]  M. Kaltenbrunner,et al.  Ultrathin and lightweight organic solar cells with high flexibility , 2012, Nature Communications.

[73]  Kingo Itaya,et al.  Electrochemical and spectroelectrochemical properties of polyviologen complex modified electrodes , 1981 .

[74]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[75]  Jessika E Trancik,et al.  Renewable energy: Back the renewables boom , 2014, Nature.

[76]  Stu Borman Combinatorial Chemistry: Industry is embracing the technology 'totally,' as researchers continue to advance the art of rapid synthesis and screening , 1998 .

[77]  W. Dale Compton,et al.  Color centers in solids , 1962 .

[78]  Mark Peplow,et al.  Organic synthesis: The robo-chemist , 2014, Nature.

[79]  Ken Nagasaka,et al.  Multiobjective Intelligent Energy Management for a Microgrid , 2013, IEEE Transactions on Industrial Electronics.

[80]  Richard J Ingham,et al.  Organic synthesis: march of the machines. , 2015, Angewandte Chemie.

[81]  Ichiro Takeuchi Combinatorial Pulsed Laser Deposition , 2006 .

[82]  Ping Liu,et al.  Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts , 2017, Science.

[83]  Christoph J. Brabec,et al.  Combinatorial Screening of Polymer:Fullerene Blends for Organic Solar Cells by Inkjet Printing , 2011 .

[84]  K. Zhang,et al.  Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. , 2013, Nature materials.

[85]  T. Wirth,et al.  Intelligent microflow: development of self-optimizing reaction systems. , 2011, Angewandte Chemie.

[86]  Surya R. Kalidindi,et al.  Extracting knowledge from molecular mechanics simulations of grain boundaries using machine learning , 2017 .

[87]  Yang Yang,et al.  Polymer solar cells , 2012, Nature Photonics.

[88]  Cormac Toher,et al.  Charting the complete elastic properties of inorganic crystalline compounds , 2015, Scientific Data.

[89]  Edward O. Pyzer-Knapp,et al.  Learning from the Harvard Clean Energy Project: The Use of Neural Networks to Accelerate Materials Discovery , 2015 .

[90]  Michael Buchholz,et al.  Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods , 2013 .

[91]  C. W. Dannatt,et al.  Roasting and reduction processes. Roasting and reduction processes—a general survey , 1948 .

[92]  Anubhav Jain,et al.  Computational and experimental investigation of TmAgTe2 and XYZ2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening , 2015 .

[93]  Philipp Rudolf von Rohr,et al.  Reaction Process of Resin-Catalyzed Methyl Formate Hydrolysis in Biphasic Continuous Flow , 2017 .

[94]  Li Mei,et al.  PULSED LASER DEPOSITION OF THIN FILMS , 2000 .

[95]  Nigel D Goldenfeld,et al.  Crystals, Defects and Microstructures: Modeling across Scales , 2002 .

[96]  Thomas J. Owen,et al.  High-Throughput 1H NMR and HPLC Characterization of a 96-Member Substituted Methylene Malonamic Acid Library , 1999 .

[97]  Frederik C. Krebs,et al.  Economic assessment of solar electricity production from organic-based photovoltaic modules in a domestic environment , 2011 .

[98]  R. Mortimer,et al.  New Electrochromic Materials , 2002, Science progress.

[99]  Anubhav Jain,et al.  Computational predictions of energy materials using density functional theory , 2016 .

[100]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[101]  Stephen Trimble Fantastic with plastic , 2016 .

[102]  Andrey Kazennov,et al.  The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology , 2016, Oncotarget.

[103]  Ranjan Srivastava,et al.  Machine Learning Using Combined Structural and Chemical Descriptors for Prediction of Methane Adsorption Performance of Metal Organic Frameworks (MOFs). , 2017, ACS combinatorial science.

[104]  A F Sanders,et al.  Empirical Explorations of SYNCHEM , 1977, Science.

[105]  S. Joshua Swamidass,et al.  Learning a Local-Variable Model of Aromatic and Conjugated Systems , 2018, ACS central science.

[106]  Thomas Blaschke,et al.  Application of Generative Autoencoder in De Novo Molecular Design , 2017, Molecular informatics.

[107]  Anubhav Jain,et al.  Phosphates as Lithium-Ion Battery Cathodes: An Evaluation Based on High-Throughput ab Initio Calculations , 2011 .

[108]  Barthelemy Chollet,et al.  Is there a first mover advantage in science? Pioneering behavior and scientific production in nanotechnology , 2017 .

[109]  Lei Cheng,et al.  The Electrolyte Genome project: A big data approach in battery materials discovery , 2015 .

[110]  Stefano Ermon,et al.  Flow-GAN: Combining Maximum Likelihood and Adversarial Learning in Generative Models , 2017, AAAI.

[111]  Noam Bernstein,et al.  Machine learning unifies the modeling of materials and molecules , 2017, Science Advances.

[112]  Yang Wang,et al.  Switchable Materials for Smart Windows. , 2016, Annual review of chemical and biomolecular engineering.

[113]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[114]  Anubhav Jain,et al.  Erratum: Computational and experimental investigation of TmAgTe2 and: XYZ 2 compounds, a new group of thermoelectric materials identified by first-principles high-throughput screening (Journal of Materials Chemistry C (2015) 3 (10554-10565)) , 2016 .

[115]  Joseph H. Montoya,et al.  The Challenge of Electrochemical Ammonia Synthesis: A New Perspective on the Role of Nitrogen Scaling Relations. , 2015, ChemSusChem.

[116]  Bart Selman,et al.  Learning Policies for Battery Usage Optimization in Electric Vehicles , 2012, ECML/PKDD.

[117]  Mitch Jacoby,et al.  The future of low ‐ cost solar cells Perovskite and other emerging photovoltaic technologies grab headlines , 2016 .

[118]  Victor Snieckus,et al.  Practical Synthetic Organic Chemistry. Reactions, Principles, and Techniques. Edited by Stéphane Caron. , 2012 .

[119]  W. L. Jorgensen,et al.  CAMEO: a program for the logical prediction of the products of organic reactions , 1990 .

[120]  Xingcheng Xiao,et al.  A review of graphene and graphene oxide sponge: material synthesis and applications to energy and the environment , 2014 .

[121]  Jens K Nørskov,et al.  Materials for solar fuels and chemicals. , 2016, Nature materials.

[122]  Kevin Bateman,et al.  Nanomole-scale high-throughput chemistry for the synthesis of complex molecules , 2015, Science.

[123]  Eider Goikolea,et al.  Review on supercapacitors: Technologies and materials , 2016 .

[124]  Steven V Ley,et al.  Flow chemistry syntheses of natural products. , 2013, Chemical Society reviews.

[125]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[126]  Lei Han,et al.  A Naphthalenediimide-Based Metal-Organic Framework and Thin Film Exhibiting Photochromic and Electrochromic Properties. , 2016, Inorganic chemistry.

[127]  Michael P. Marshak,et al.  Computational design of molecules for an all-quinone redox flow battery , 2014, Chemical science.

[128]  Dit-Yan Yeung,et al.  Towards Bayesian Deep Learning: A Framework and Some Existing Methods , 2016, IEEE Transactions on Knowledge and Data Engineering.

[129]  Hideomi Koinuma,et al.  Combinatorial pulsed laser deposition and thermoelectricity of (La1−xCax)VO3 composition-spread films , 2004 .

[130]  Mario Leclerc,et al.  Direct (Hetero)arylation Polymerization: Simplicity for Conjugated Polymer Synthesis. , 2016, Chemical reviews.

[131]  Angelika Weber,et al.  SynCar: An Approach to Automated Synthesis. , 2005 .

[132]  Brian A. Korgel,et al.  Materials science: Composite for smarter windows , 2013, Nature.

[133]  Raymond Jasinski n‐Heptylviologen Radical Cation Films on Transparent Oxide Electrodes , 1978 .

[134]  Arild Gustavsen,et al.  Phase Change Materials for Building Applications: A State-of-the-Art Review , 2010 .

[135]  Markus Antonietti,et al.  Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. , 2015, Nature nanotechnology.

[136]  Richard N. Zare,et al.  Optimizing Chemical Reactions with Deep Reinforcement Learning , 2017, ACS central science.

[137]  James Theiler,et al.  Accelerated search for materials with targeted properties by adaptive design , 2016, Nature Communications.

[138]  J S Smith,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost , 2016, Chemical science.

[139]  Min Gyu Kim,et al.  Colloidally prepared La-doped BaSnO3 electrodes for efficient, photostable perovskite solar cells , 2017, Science.

[140]  Huirong Xu,et al.  Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review , 2008 .

[141]  Christian Fleischer,et al.  Critical review of the methods for monitoring of lithium-ion batteries in electric and hybrid vehicles , 2014 .

[142]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[143]  Sergey Nikolenko,et al.  druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico. , 2017, Molecular pharmaceutics.

[144]  Ib Chorkendorff,et al.  Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol. , 2014, Nature chemistry.

[145]  Christoph J. Brabec,et al.  Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates , 2017 .

[146]  Anubhav Jain,et al.  YCuTe2: a member of a new class of thermoelectric materials with CuTe4-based layered structure , 2016 .

[147]  Christoph J. Brabec,et al.  Introducing a New Potential Figure of Merit for Evaluating Microstructure Stability in Photovoltaic Polymer-Fullerene Blends , 2017 .

[148]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[149]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[150]  Xiao-Jiang Feng,et al.  Exploring experimental fitness landscapes for chemical synthesis and property optimization. , 2017, Physical chemistry chemical physics : PCCP.

[151]  Alán Aspuru-Guzik,et al.  A redox-flow battery with an alloxazine-based organic electrolyte , 2016, Nature Energy.

[152]  Nicholas DeForest,et al.  United States energy and CO2 savings potential from deployment of near-infrared electrochromic window glazings , 2015 .

[153]  J. Vybíral,et al.  Big data of materials science: critical role of the descriptor. , 2014, Physical review letters.

[154]  Juan Manuel Parrilla Gutierrez,et al.  Evolution of oil droplets in a chemorobotic platform , 2014, Nature Communications.

[155]  Elizabeth Gibney,et al.  Google AI algorithm masters ancient game of Go , 2016, Nature.

[156]  Henriette Naims,et al.  Economics of carbon dioxide capture and utilization—a supply and demand perspective , 2016, Environmental Science and Pollution Research.

[157]  Lauren Garten,et al.  Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection. , 2016, ACS applied materials & interfaces.

[158]  W. Todd Wipke,et al.  Computer-assisted organic synthesis : a symposium cosponsored by the Division of Chemical Information and the Division of Computers in Chemistry at the centennial meeting of the American Chemical Society, New York, N.Y., April 7-8, 1976 , 1977 .

[159]  Wei Chen,et al.  A computational assessment of the electronic, thermoelectric, and defect properties of bournonite (CuPbSbS3) and related substitutions. , 2017, Physical chemistry chemical physics : PCCP.

[160]  R. Drumright,et al.  High-Throughput Industrial Coatings Research at The Dow Chemical Company. , 2016, ACS combinatorial science.

[161]  Ryan P. Adams,et al.  Design of efficient molecular organic light-emitting diodes by a high-throughput virtual screening and experimental approach. , 2016, Nature materials.

[162]  Alán Aspuru-Guzik,et al.  Renewables need a grand-challenge strategy , 2016, Nature.

[163]  Ulrich S. Schubert,et al.  Redox‐Flow Batteries: From Metals to Organic Redox‐Active Materials , 2016, Angewandte Chemie.

[164]  J. Linton,et al.  From bench to business , 2003, Nature materials.

[165]  Ichiro Takeuchi,et al.  Combinatorial pulsed laser deposition using a compact high-throughout thin-film deposition flange , 2004 .

[166]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[167]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[168]  Klaus-Robert Müller,et al.  Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies. , 2013, Journal of chemical theory and computation.

[169]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[170]  Abhinav Vishnu,et al.  Deep learning for computational chemistry , 2017, J. Comput. Chem..

[171]  Ryosuke Jinnouchi,et al.  Predicting Catalytic Activity of Nanoparticles by a DFT-Aided Machine-Learning Algorithm. , 2017, The journal of physical chemistry letters.

[172]  Pierre Baldi,et al.  ReactionPredictor: Prediction of Complex Chemical Reactions at the Mechanistic Level Using Machine Learning , 2012, J. Chem. Inf. Model..

[173]  Fengqi You,et al.  In silico discovery of metal-organic frameworks for precombustion CO2 capture using a genetic algorithm , 2016, Science Advances.

[174]  Rolando Burgos,et al.  Review of Solid-State Transformer Technologies and Their Application in Power Distribution Systems , 2013, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[175]  Sachin Ahuja,et al.  Machine learning and its applications: A review , 2017, 2017 International Conference on Big Data Analytics and Computational Intelligence (ICBDAC).

[176]  Aleksandra Baranczak,et al.  Integrated Platform for Expedited Synthesis-Purification-Testing of Small Molecule Libraries. , 2017, ACS medicinal chemistry letters.

[177]  William L. Jorgensen,et al.  Computer-assisted synthetic analysis. Synthetic strategies based on appendages and the use of reconnective transforms , 1976 .

[178]  Lucien Georgeson,et al.  Clean up energy innovation , 2016, Nature.

[179]  W. T. Wipke,et al.  Computer-Assisted Organic Synthesis , 1977 .

[180]  Christoph J. Brabec,et al.  Exploring the Stability of Novel Wide Bandgap Perovskites by a Robot Based High Throughput Approach , 2018 .

[181]  R. Phillips,et al.  Crystals, Defects and Microstructures: Modeling Across Scales , 2001 .

[182]  R. Lal Soil carbon sequestration to mitigate climate change , 2004 .

[183]  Phil Williamson,et al.  Emissions reduction: Scrutinize CO2 removal methods , 2016, Nature.

[184]  Antony J. Williams,et al.  ChemSpider:: An Online Chemical Information Resource , 2010 .

[185]  Patrick Achard,et al.  Aerogel-based thermal superinsulation: an overview , 2012, Journal of Sol-Gel Science and Technology.

[186]  Thomas F. Jaramillo,et al.  Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. , 2014, Journal of the American Chemical Society.

[187]  Anton van den Hengel,et al.  Bayesian Conditional Generative Adverserial Networks , 2017, ArXiv.

[188]  Oliver Ambacher,et al.  Comparison of normal and inverse poly(3-hexylthiophene)/fullerene solar cell architectures , 2005 .

[189]  Johann Gasteiger,et al.  EROS A computer program for generating sequences of reactions , 1978 .

[190]  Doyle Pm,et al.  Combinatorial chemistry in the discovery and development of drugs. , 1995 .

[191]  Xiao-Jiang Feng,et al.  Universal characteristics of chemical synthesis and property optimization , 2011 .

[192]  Jan Rossmeisl,et al.  Universality in Oxygen Evolution Electrocatalysis on Oxide , 2011 .

[193]  Paul A. Salvador,et al.  Supplemental Information Combinatorial substrate epitaxy : a new approach to growth of complex metastable compounds † , 2013 .

[194]  Kristin A. Persson,et al.  Surface energies of elemental crystals , 2016, Scientific Data.

[195]  Martin D. Burke,et al.  Synthesis of many different types of organic small molecules using one automated process , 2015, Science.

[196]  Danail Bonchev,et al.  Statistical modelling of molecular descriptors in QSAR/QSPR , 2012 .

[197]  Guohua Shen,et al.  Deep image reconstruction from human brain activity , 2017 .

[198]  Zia Ud Din,et al.  Phase change material (PCM) storage for free cooling of buildings—A review , 2013 .

[199]  Christoph J. Brabec,et al.  Washing away barriers , 2017 .

[200]  Markus Reiher,et al.  Heuristics-Guided Exploration of Reaction Mechanisms. , 2015, Journal of chemical theory and computation.

[201]  Rajappa Vaidyanathan,et al.  Addition to Carbon–Heteroatom Multiple Bonds , 2020 .

[202]  Mike Preuss,et al.  Learning to Plan Chemical Syntheses , 2017, ArXiv.

[203]  P. J. Spencer,et al.  A Brief History of CALPHAD , 2008 .

[204]  R. Service The synthesis machine. , 2015, Science.

[205]  Boris Kozinsky,et al.  AiiDA: Automated Interactive Infrastructure and Database for Computational Science , 2015, ArXiv.

[206]  Paul M. S. Monk,et al.  The Viologens: Physicochemical Properties, Synthesis and Applications of the Salts of 4,4'-Bipyridine , 1998 .

[207]  Christoph J. Brabec,et al.  Automatized analysis of IR‐images of photovoltaic modules and its use for quality control of solar cells , 2016 .

[208]  Kimito Funatsu,et al.  SOPHIA, a Knowledge Base-Guided Reaction Prediction System - Utilization of a Knowledge Base Derived from a Reaction Database , 1995, J. Chem. Inf. Comput. Sci..

[209]  Martin L. Green,et al.  A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films , 2013 .

[210]  Sendhil Mullainathan,et al.  Machine Learning: An Applied Econometric Approach , 2017, Journal of Economic Perspectives.

[211]  Christoph J. Brabec,et al.  Solution-Processed Organic Photovoltaics , 2013 .

[212]  Chen Zhang,et al.  Combinatorial pulsed laser deposition of magnetic and magneto-optical Sr(GaxTiyFe0.34-0.40)O3-δ perovskite films. , 2014, ACS combinatorial science.

[213]  Vladan Stevanovic,et al.  A Computational Framework for Automation of Point Defect Calculations , 2016, 1611.00825.

[214]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[215]  Aline Rougier,et al.  Double-Sided Electrochromic Device Based on Metal-Organic Frameworks. , 2017, ACS applied materials & interfaces.

[216]  R. Gordon,et al.  A Neutral pH Aqueous Organic–Organometallic Redox Flow Battery with Extremely High Capacity Retention , 2017 .

[217]  Alán Aspuru-Guzik,et al.  Neural Networks for the Prediction of Organic Chemistry Reactions , 2016, ACS central science.

[218]  Steven V. Ley,et al.  ReactIR Flow Cell: A New Analytical Tool for Continuous Flow Chemical Processing , 2010 .

[219]  Christoph J. Brabec,et al.  Organic materials: Fantastic plastic , 2008 .

[220]  Paul A. Keifer,et al.  High-resolution NMR techniques for solid-phase synthesis and combinatorial chemistry , 1997 .

[221]  Ken E. Whelan,et al.  The Automation of Science , 2009, Science.

[222]  Makoto Otani,et al.  A high-throughput thermoelectric power-factor screening tool for rapid construction of thermoelectric property diagrams , 2007 .

[223]  W. M. Kline,et al.  A review of organic electrochromic fabric devices , 2014 .

[224]  Jürgen O. Metzger,et al.  Beyond Oil and Gas: The Methanol Economy. Von George A. Olah, Alain Goeppert und G. K. Surya Prakash. , 2006 .

[225]  Anubhav Jain,et al.  Computational and experimental investigation of TmAgTe 2 and XYZ 2 compounds , a new group of thermoelectric materials identified by first-principles high-throughput screening † , 2015 .

[226]  C. Wilmer,et al.  Large-scale screening of hypothetical metal-organic frameworks. , 2012, Nature chemistry.

[227]  Lei Bi,et al.  Combinatorial pulsed laser deposition of Fe, Cr, Mn, and Ni-substituted SrTiO3 films on Si substrates. , 2012, ACS combinatorial science.

[228]  Sabina Podlewska,et al.  Creating the New from the Old: Combinatorial Libraries Generation with Machine-Learning-Based Compound Structure Optimization , 2017, J. Chem. Inf. Model..

[229]  Andrew Y. Ng,et al.  Cardiologist-Level Arrhythmia Detection with Convolutional Neural Networks , 2017, ArXiv.

[230]  Delia J. Milliron,et al.  Nanostructured Electrochromic Smart Windows: Traditional Materials and NIR‐Selective Plasmonic Nanocrystals , 2014 .

[231]  Martina Ziefle,et al.  CO2 utilisation today: Report 2017: Foreword , 2017 .

[232]  John B. Goodenough,et al.  The Li‐Ion Rechargeable Battery: A Perspective , 2013 .

[233]  Anubhav Jain,et al.  Understanding thermoelectric properties from high-throughput calculations: trends, insights, and comparisons with experiment , 2016 .

[234]  Daniel M. Lowe,et al.  Annotated Chemical Patent Corpus: A Gold Standard for Text Mining , 2014, PloS one.

[235]  E J Corey,et al.  Computer-assisted design of complex organic syntheses. , 1969, Science.

[236]  Alán Aspuru-Guzik,et al.  From computational discovery to experimental characterization of a high hole mobility organic crystal , 2011, Nature communications.

[237]  Chuanjiang Qin Efficient and Stable Solution-Processed Planar Perovskite Solar Cells , 2015 .

[238]  Martin A. Green,et al.  Commercial progress and challenges for photovoltaics , 2016, Nature Energy.

[239]  Michael Shevlin,et al.  Practical High-Throughput Experimentation for Chemists , 2017, ACS medicinal chemistry letters.

[240]  Yves Grohens,et al.  Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties. , 2016, Carbohydrate polymers.

[241]  Bjørk Hammer,et al.  A genetic algorithm for first principles global structure optimization of supported nano structures. , 2014, The Journal of chemical physics.

[242]  Mircea Dincă,et al.  Facile deposition of multicolored electrochromic metal-organic framework thin films. , 2013, Angewandte Chemie.

[243]  Christoph J. Brabec,et al.  Real-time evaluation of thin film drying kinetics using an advanced, multi-probe optical setup , 2016 .

[244]  Michael P. Marshak,et al.  A metal-free organic–inorganic aqueous flow battery , 2014, Nature.

[245]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[246]  Kristin A. Persson,et al.  A high-throughput framework for determining adsorption energies on solid surfaces , 2017, npj Computational Materials.

[247]  Alexander G. Godfrey,et al.  A remote-controlled adaptive medchem lab: an innovative approach to enable drug discovery in the 21st Century. , 2013, Drug discovery today.

[248]  Marco Buongiorno Nardelli,et al.  High-throughput computational screening of thermal conductivity, Debye temperature, and Grüneisen parameter using a quasiharmonic Debye model , 2014, 1407.7789.

[249]  Alán Aspuru-Guzik,et al.  The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid , 2011 .

[250]  Anders Nilsson,et al.  High selectivity for ethylene from carbon dioxide reduction over copper nanocube electrocatalysts. , 2015, Angewandte Chemie.

[251]  Gerhard Gobsch,et al.  Flexible large area polymer solar cells based on poly(3-hexylthiophene)/fullerene , 2004 .

[252]  Rachel A. Segalman,et al.  Organic thermoelectric materials for energy harvesting and temperature control , 2016, Nature Reviews Materials.

[253]  Kristin A. Persson,et al.  First principles high throughput screening of oxynitrides for water-splitting photocatalysts , 2013 .

[254]  Arild Gustavsen,et al.  Properties, Requirements and Possibilities of Smart Windows for Dynamic Daylight and Solar Energy Control in Buildings: A State-of-the-Art Review , 2010 .

[255]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[256]  K. C. Nicolaou,et al.  Combinatorial Chemistry in Perspective , 2005 .

[257]  Thomas F. Jaramillo,et al.  New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces , 2012 .

[258]  A. Marques,et al.  Multifunctional Material Systems: A state-of-the-art review , 2016 .

[259]  Muratahan Aykol,et al.  High-throughput computational design of cathode coatings for Li-ion batteries , 2016, Nature Communications.

[260]  Peter G. Schultz,et al.  A Combinatorial Approach to Materials Discovery , 1995, Science.

[261]  H. M. Geysen,et al.  Use of peptide synthesis to probe viral antigens for epitopes to a resolution of a single amino acid. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[262]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[263]  Zhenwei Li,et al.  Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. , 2015, Physical review letters.

[264]  Alán Aspuru-Guzik,et al.  What Is High-Throughput Virtual Screening? A Perspective from Organic Materials Discovery , 2015 .

[265]  George D. Magoulas,et al.  Machine Learning in Medical Applications , 2001, Machine Learning and Its Applications.

[266]  Roger J. Mortimer,et al.  Conjugated conducting polymers with electrochromic and fluorescent properties , 2015 .

[267]  Tao Liu,et al.  Thienobenzene-fused perylene bisimide as a non-fullerene acceptor for organic solar cells with a high open-circuit voltage and power conversion efficiency , 2017 .

[268]  Nathan D. Ide,et al.  Selected Metal‐Mediated Cross‐Coupling Reactions , 2011 .

[269]  T. L. Liu,et al.  Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. , 2017, Journal of the American Chemical Society.

[270]  Jay R. Werber,et al.  Materials for next-generation desalination and water purification membranes , 2016 .

[271]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[272]  Atin Basuchoudhary,et al.  Machine-learning Techniques in Economics , 2017 .

[273]  Anubhav Jain,et al.  Metal phosphides as potential thermoelectric materials , 2017 .

[274]  Zlatan Aksamija,et al.  Lattice Thermal Conductivity of the Binary and Ternary Group-IV Alloys Si-Sn, Ge-Sn, and Si-Ge-Sn , 2016 .

[275]  R. Margolis,et al.  Terawatt-scale photovoltaics: Trajectories and challenges , 2017, Science.

[276]  Wei Wang,et al.  A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4‐HO‐TEMPO Catholyte , 2016 .

[277]  S. Kirklin,et al.  High-throughput screening of high-capacity electrodes for hybrid Li-ion-Li-O₂ cells. , 2014, Physical chemistry chemical physics : PCCP.

[278]  P. Manju,et al.  Fast machine-learning online optimization of ultra-cold-atom experiments , 2015, Scientific Reports.

[279]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[280]  Marco Buongiorno Nardelli,et al.  The high-throughput highway to computational materials design. , 2013, Nature materials.

[281]  Tejs Vegge,et al.  Genetic Algorithm Procreation Operators for Alloy Nanoparticle Catalysts , 2014, Topics in Catalysis.

[282]  Leon E. Clarke,et al.  Carbon capture and storage across fuels and sectors in energy system transformation pathways , 2017 .

[283]  Michael G. Hutchings,et al.  Route Design in the 21st Century: The ICSYNTH Software Tool as an Idea Generator for Synthesis Prediction , 2015 .

[284]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[285]  J. K. Lee,et al.  Computer generation of binary and ternary phase diagrams via a convex hull method , 1992 .

[286]  Anubhav Jain,et al.  Carbonophosphates: A New Family of Cathode Materials for Li-Ion Batteries Identified Computationally , 2012 .

[287]  Marco Buongiorno Nardelli,et al.  AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations , 2012 .

[288]  Jonas Baltrusaitis,et al.  Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes , 2013 .