Optimization Strategy for PID-Controller Design of AMB Rotor Systems

Most industrial active magnetic bearings (AMBs) are controlled by proportional-integral-derivative (PID) controllers. Usually, a time-consuming iterative manual tuning procedure is required to design these PID controllers. In this contribution, we introduce the strategy, algorithms, and results from an AMB controller design, including optimization using a multiobjective genetic algorithm. We focus on the combination of frequency- and time-domain-based optimization, a strategy for the evaluation of fitness functions for complex PID-controller design, and a sensitivity-based parameter reduction for optimization. Two AMB system controller designs are considered and satisfactory results are obtained using the suggested optimization strategy. For validation purposes, the optimized controller design is experimentally implemented for the first AMB system, which contains a flexible test rotor supported by two AMBs. The maximal rotational speed of 15 000 r/min is achieved for the test rotor. A comparison between simulated and experimental results is presented.

[1]  Boris T. Polyak,et al.  Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..

[2]  Peter J. Fleming,et al.  On the Evolutionary Optimization of Many Conflicting Objectives , 2007, IEEE Transactions on Evolutionary Computation.

[3]  Alexander H. Pesch,et al.  Development of chatter attenuation robust control for an AMB machining spindle , 2013 .

[4]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[5]  Peter J. Fleming,et al.  Multi-objective optimisation of distributed active magnetic bearing controllers , 1997 .

[6]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[7]  A. Binder,et al.  Rotor levitation by active magnetic bearing using digital state controller , 2008, 2008 13th International Power Electronics and Motion Control Conference.

[8]  Riku Pöllänen,et al.  Centralized optimal position control for active magnetic bearings: comparison with decentralized control , 2009 .

[9]  D. Dolinar,et al.  Decentralized PI/PD position control for active magnetic bearings , 2006 .

[10]  G. Schweitzer,et al.  Magnetic bearings : theory, design, and application to rotating machinery , 2009 .

[11]  Rainer Gausmann,et al.  Investigations On The Dynamic Coefficients Of Impeller Eye Labyrinth Seals. , 2009 .

[12]  Yana I. Petrikevich Randomized methods of stabilization of the discrete linear systems , 2008 .

[13]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[14]  Zhenyu Yang,et al.  Multi-objective PID-controller tuning for a magnetic levitation system using NSGA-II , 2006, GECCO '06.

[15]  Markus Ahrens Zur magnetischen Lagerung von Schwungrad-Energiespeichern , 1996 .

[16]  Zongli Lin,et al.  Design, Construction and Modeling of a Flexible Rotor Active Magnetic Bearing Test Rig , 2010 .

[17]  A. B. M. Nijhuis Rotordynamic Design Considerations for a 23 MW Compressor with Magnetic Bearings , 2007 .

[18]  Roland Siegwart,et al.  Aktive magnetische Lagerung einer Hochleistungs-Frässpindel mit digitaler Regelung , 1989 .