Chaos and unpredictability in evolutionary dynamics in discrete time.

A discrete-time version of the replicator equation for two-strategy games is studied. The stationary properties differ from those of continuous time for sufficiently large values of the parameters, where periodic and chaotic behavior replace the usual fixed-point population solutions. We observe the familiar period-doubling and chaotic-band-splitting attractor cascades of unimodal maps but in some cases more elaborate variations appear due to bimodality. Also unphysical stationary solutions can have unusual physical implications, such as the uncertainty of the final population caused by sensitivity to initial conditions and fractality of attractor preimage manifolds.

[1]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[2]  H. Schuster Deterministic chaos: An introduction , 1984 .

[3]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[4]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[5]  H. E. Kuhn,et al.  BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, , 2007 .

[6]  BRIAN SKYRMS,et al.  Chaos in game dynamics , 1992, J. Log. Lang. Inf..

[7]  Tsuyoshi Chawanya A New Type of Irregular Motion in a Class of Game Dynamics Systems , 1994, chao-dyn/9409005.

[8]  G. Szabó,et al.  Evolutionary games on graphs , 2006, cond-mat/0607344.

[9]  M. Nowak Evolutionary Dynamics: Exploring the Equations of Life , 2006 .

[10]  Ángel Sánchez,et al.  Evolutionary game theory: Temporal and spatial effects beyond replicator dynamics , 2009, Physics of life reviews.

[11]  J. Hofbauer,et al.  Evolutionary game dynamics , 2011 .

[12]  Tobias Galla,et al.  Intrinsic noise in game dynamical learning. , 2009, Physical review letters.

[13]  C. Hauert,et al.  Coevolutionary dynamics: from finite to infinite populations. , 2004, Physical review letters.

[14]  M. Nowak,et al.  Chaos and the evolution of cooperation. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[16]  B. Huberman,et al.  Fluctuations and simple chaotic dynamics , 1982 .

[17]  J. Sobel,et al.  On the limit points of discrete selection dynamics , 1992 .

[18]  R. Sugden The Economics of Rights, Co-Operation, and Welfare , 1986 .

[19]  Eizo Akiyama,et al.  Chaos in learning a simple two-person game , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  L. Samuelson,et al.  Musical Chairs: Modeling Noisy Evolution , 1995 .

[21]  W. Hamilton,et al.  The Evolution of Cooperation , 1984 .

[22]  B. M. Fulk MATH , 1992 .

[23]  György Szabó,et al.  Phase transitions and volunteering in spatial public goods games. , 2002, Physical review letters.

[24]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[25]  Ariel Fernández,et al.  H. G. Schuster: Deterministic Chaos, Second Revised Edition, VCH Verlagsgesellschaft, Weinheim. 273 Seiten, Preis: DM 108,– , 1988 .

[26]  J. Cuesta,et al.  Time scales in evolutionary dynamics. , 2006, Physical review letters.

[27]  Christoph Hauert,et al.  Effects of Space in 2 × 2 Games , 2002, Int. J. Bifurc. Chaos.

[28]  A. Engel,et al.  Matrix Games, Mixed Strategies, and Statistical Mechanics , 1998, cond-mat/9809265.

[29]  Arne Traulsen,et al.  Stochastic gain in population dynamics. , 2004, Physical review letters.

[30]  D. E. Matthews Evolution and the Theory of Games , 1977 .

[31]  J Gómez-Gardeñes,et al.  Social network reciprocity as a phase transition in evolutionary cooperation. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Robert van Rooij,et al.  The Stag Hunt and the Evolution of Social Structure , 2007, Stud Logica.