On Incremental Structure from Motion Using Lines

Humans tend to build environments with structure, which consists of mainly planar surfaces. From the intersection of planar surfaces arise straight lines. Lines have more degreesof-freedom than points. Thus, line-based Structure-from-Motion (SfM) provides more information about the environment. In this paper, we present solutions for SfM using lines, namely, incremental SfM. These approaches consist of designing state observers for a camera’s dynamical visual system looking at a 3D line. We start by presenting a model that uses spherical coordinates for representing the line’s moment vector. We show that this parameterization has singularities, and therefore we introduce a more suitable model that considers the line’s moment and shortest viewing ray. Concerning the observers, we present two different methodologies. The first uses a memory-less state-ofthe-art framework for dynamic visual systems. Since the previous states of the robotic agent are accessible –while performing the 3D mapping of the environment– the second approach aims at exploiting the use of memory to improve the estimation accuracy and convergence speed. The two models and the two observers are evaluated in simulation and real data, where mobile and manipulator robots are used.

[1]  David J. Kriegman,et al.  Structure and Motion from Line Segments in Multiple Images , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Yong Liu,et al.  Robust visual SLAM with point and line features , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[3]  Francesc Moreno-Noguer,et al.  PL-SLAM: Real-time monocular visual SLAM with points and lines , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[4]  Ian D. Reid,et al.  RSLAM: A System for Large-Scale Mapping in Constant-Time Using Stereo , 2011, International Journal of Computer Vision.

[5]  Dimos V. Dimarogonas,et al.  A Framework for Depth Estimation and Relative Localization of Ground Robots using Computer Vision , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[6]  Sammy Omari,et al.  Metric visual-inertial navigation system using single optical flow feature , 2013, 2013 European Control Conference (ECC).

[7]  Dacheng Tao,et al.  Deep Ordinal Regression Network for Monocular Depth Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[8]  David Nistér,et al.  Preemptive RANSAC for live structure and motion estimation , 2005, Machine Vision and Applications.

[9]  Adrien Bartoli,et al.  Structure-from-motion using lines: Representation, triangulation, and bundle adjustment , 2005, Comput. Vis. Image Underst..

[10]  Omar Tahri,et al.  Active Structure-from-Motion for 3D Straight LinesBehaviors* This work was partially supported by the Portuguese FCT grants PD/Bd/135015/2017 (through the NETSys Doctoral Program) & SFRH/BPD/111495/2015, and ISRILARSyS Strategic Funding by the FCT project PEst-OE/EEI/LA0009/2013. , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[11]  Marcello Farina,et al.  Distributed Moving Horizon Estimation for Linear Constrained Systems , 2010, IEEE Transactions on Automatic Control.

[12]  Changchang Wu,et al.  Towards Linear-Time Incremental Structure from Motion , 2013, 2013 International Conference on 3D Vision.

[13]  Ian D. Reid,et al.  Unsupervised Learning of Monocular Depth Estimation and Visual Odometry with Deep Feature Reconstruction , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[14]  David J. Kriegman,et al.  Moving in stereo: Efficient structure and motion using lines , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  João Pedro Hespanha,et al.  Nonlinear output-feedback model predictive control with moving horizon estimation , 2014, 53rd IEEE Conference on Decision and Control.

[16]  D. Dimarogonas,et al.  Fast Model Predictive Image-Based Visual Servoing for Quadrotors* , 2020, 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[17]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[18]  Rama Chellappa,et al.  Structure from Motion Using Sequential Monte Carlo Methods , 2004, International Journal of Computer Vision.

[19]  François Chaumette,et al.  Active Structure From Motion: Application to Point, Sphere, and Cylinder , 2014, IEEE Transactions on Robotics.

[20]  Sertac Karaman,et al.  FastDepth: Fast Monocular Depth Estimation on Embedded Systems , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[21]  Ian D. Reid,et al.  Learning Depth from Single Monocular Images Using Deep Convolutional Neural Fields , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Andrew W. Fitzgibbon,et al.  Bundle Adjustment - A Modern Synthesis , 1999, Workshop on Vision Algorithms.

[24]  François Chaumette,et al.  Learning the shape of image moments for optimal 3D structure estimation , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[25]  Riccardo Spica,et al.  A framework for active estimation: Application to Structure from Motion , 2013, 52nd IEEE Conference on Decision and Control.

[26]  Giorgio Battistelli,et al.  Moving-horizon state estimation for nonlinear discrete-time systems: New stability results and approximation schemes , 2008, Autom..

[27]  Javier Gonzalez-Jimenez,et al.  PL-SLAM: A Stereo SLAM System Through the Combination of Points and Line Segments , 2017, IEEE Transactions on Robotics.

[28]  Pedro U. Lima,et al.  A robotic platform for edutainment activities in a pediatric hospital , 2014, 2014 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC).

[29]  David Q. Mayne,et al.  Constrained state estimation for nonlinear discrete-time systems: stability and moving horizon approximations , 2003, IEEE Trans. Autom. Control..

[30]  Giuseppe Oriolo,et al.  Feature Depth Observation for Image-based Visual Servoing: Theory and Experiments , 2008, Int. J. Robotics Res..

[31]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[32]  Mac Schwager,et al.  A Real-Time Game Theoretic Planner for Autonomous Two-Player Drone Racing , 2018, Robotics: Science and Systems.

[33]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[34]  Tor Arne Johansen,et al.  Regularized Nonlinear Moving-Horizon Observer With Robustness to Delayed and Lost Data , 2013, IEEE Transactions on Control Systems Technology.

[35]  D. Mayne,et al.  Moving horizon observers and observer-based control , 1995, IEEE Trans. Autom. Control..

[36]  Alessandro Astolfi,et al.  Observer design for range and orientation identification , 2010, Autom..

[37]  Warren E. Dixon,et al.  Range identification for perspective vision systems , 2003, IEEE Trans. Autom. Control..

[38]  Éric Marchand,et al.  ViSP for visual servoing: a generic software platform with a wide class of robot control skills , 2005, IEEE Robotics & Automation Magazine.

[39]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[40]  Juan D. Tardós,et al.  ORB-SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D Cameras , 2016, IEEE Transactions on Robotics.

[41]  Pedro Miraldo,et al.  Minimal Solvers for 3D Scan Alignment With Pairs of Intersecting Lines , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Antonio Pedro Aguiar,et al.  Active Depth Estimation: Stability Analysis and its Applications , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[43]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[44]  Frank Dellaert,et al.  Line-Based Structure from Motion for Urban Environments , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[45]  Richard Elvira,et al.  ORB-SLAM3: An Accurate Open-Source Library for Visual, Visual–Inertial, and Multimap SLAM , 2021, IEEE Transactions on Robotics.

[46]  Shigeru Hanba,et al.  Further Results on the Uniform Observability of Discrete-Time Nonlinear Systems , 2010, IEEE Transactions on Automatic Control.

[47]  Richard Szeliski,et al.  Building Rome in a day , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[48]  Samia Boukir,et al.  Structure From Controlled Motion , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  Shigeru Hanba,et al.  On the “Uniform” Observability of Discrete-Time Nonlinear Systems , 2009, IEEE Transactions on Automatic Control.

[50]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[51]  Tomasz Malisiewicz,et al.  SuperPoint: Self-Supervised Interest Point Detection and Description , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[52]  Heinrich H. Bülthoff,et al.  Nonlinear ego-motion estimation from optical flow for online control of a quadrotor UAV , 2015, Int. J. Robotics Res..

[53]  Omar Tahri,et al.  Active Estimation of 3D Lines in Spherical Coordinates , 2019, 2019 American Control Conference (ACC).

[54]  Gustavo Carneiro,et al.  Unsupervised CNN for Single View Depth Estimation: Geometry to the Rescue , 2016, ECCV.

[55]  Driss Boutat,et al.  Brunovsky's Linear Form of Incremental Structure From Motion , 2017, IEEE Transactions on Robotics.

[56]  Éric Marchand,et al.  Feature tracking for visual servoing purposes , 2005, Robotics Auton. Syst..

[57]  François Chaumette,et al.  Coupling active depth estimation and visual servoing via a large projection operator , 2017, Int. J. Robotics Res..

[58]  Helder Araújo,et al.  Planar pose estimation for general cameras using known 3D lines , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[59]  François Chaumette,et al.  Visual servo control. I. Basic approaches , 2006, IEEE Robotics & Automation Magazine.

[60]  Oisin Mac Aodha,et al.  Unsupervised Monocular Depth Estimation with Left-Right Consistency , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[61]  Qi Wei,et al.  DS-SLAM: A Semantic Visual SLAM towards Dynamic Environments , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[62]  Frank Dellaert,et al.  Structure from motion without correspondence , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[63]  Domenico Prattichizzo,et al.  Observer design via Immersion and Invariance for vision-based leader-follower formation control , 2010, Autom..

[64]  Didier Dumur,et al.  Stability of a nonlinear Moving Horizon Estimator with pre-estimation , 2014, 2014 American Control Conference.

[65]  Ian D. Reid,et al.  Real-Time Monocular SLAM with Straight Lines , 2006, BMVC.

[66]  Jan-Michael Frahm,et al.  Structure-from-Motion Revisited , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[67]  Stefano Mattoccia,et al.  Towards Real-Time Unsupervised Monocular Depth Estimation on CPU , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[68]  J J Koenderink,et al.  Affine structure from motion. , 1991, Journal of the Optical Society of America. A, Optics and image science.

[69]  Morgan Quigley,et al.  ROS: an open-source Robot Operating System , 2009, ICRA 2009.

[70]  Javier Civera,et al.  1‐Point RANSAC for extended Kalman filtering: Application to real‐time structure from motion and visual odometry , 2010, J. Field Robotics.

[71]  Riccardo Spica,et al.  Active decentralized scale estimation for bearing-based localization , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[72]  Il Hong Suh,et al.  Building a partial 3D line-based map using a monocular SLAM , 2011, 2011 IEEE International Conference on Robotics and Automation.

[73]  Tor Arne Johansen,et al.  Moving horizon observer with regularisation for detectable systems without persistence of excitation , 2011, Int. J. Control.

[74]  Leah Blau,et al.  Computational Line Geometry , 2016 .

[75]  Kenneth S. Roberts,et al.  A new representation for a line , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[76]  Radu Horaud,et al.  Visual Servoing from Lines , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[77]  Jay H. Lee,et al.  Receding Horizon Recursive State Estimation , 1993, 1993 American Control Conference.

[78]  Paolo Robuffo Giordano,et al.  Bearing rigidity maintenance for formations of quadrotor UAVs , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[79]  Guosheng Lin,et al.  Deep convolutional neural fields for depth estimation from a single image , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Ronen Basri,et al.  A Survey on Structure from Motion , 2017, ArXiv.

[81]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[82]  Graham C. Goodwin,et al.  A moving horizon approach to Networked Control system design , 2004, IEEE Transactions on Automatic Control.

[83]  Omar Tahri,et al.  Rotation free active vision , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[84]  Warren E. Dixon,et al.  Single Camera Structure and Motion , 2012, IEEE Transactions on Automatic Control.

[85]  Larry S. Davis,et al.  Iterative Pose Estimation Using Coplanar Feature Points , 1996, Comput. Vis. Image Underst..

[86]  A. Pedro Aguiar,et al.  Low-Level Active Visual Navigation: Increasing Robustness of Vision-Based Localization Using Potential Fields , 2018, IEEE Robotics and Automation Letters.

[87]  François Chaumette,et al.  Plane estimation by active vision from point features and image moments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).