Connecting a Connectome to Behavior: An Ensemble of Neuroanatomical Models of C. elegans Klinotaxis

Increased efforts in the assembly and analysis of connectome data are providing new insights into the principles underlying the connectivity of neural circuits. However, despite these considerable advances in connectomics, neuroanatomical data must be integrated with neurophysiological and behavioral data in order to obtain a complete picture of neural function. Due to its nearly complete wiring diagram and large behavioral repertoire, the nematode worm Caenorhaditis elegans is an ideal organism in which to explore in detail this link between neural connectivity and behavior. In this paper, we develop a neuroanatomically-grounded model of salt klinotaxis, a form of chemotaxis in which changes in orientation are directed towards the source through gradual continual adjustments. We identify a minimal klinotaxis circuit by systematically searching the C. elegans connectome for pathways linking chemosensory neurons to neck motor neurons, and prune the resulting network based on both experimental considerations and several simplifying assumptions. We then use an evolutionary algorithm to find possible values for the unknown electrophsyiological parameters in the network such that the behavioral performance of the entire model is optimized to match that of the animal. Multiple runs of the evolutionary algorithm produce an ensemble of such models. We analyze in some detail the mechanisms by which one of the best evolved circuits operates and characterize the similarities and differences between this mechanism and other solutions in the ensemble. Finally, we propose a series of experiments to determine which of these alternatives the worm may be using.

[1]  J. Gray,et al.  THE LOCOMOTION OF NEMATODES. , 1964, The Journal of experimental biology.

[2]  S. Ward Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[3]  R. L. Russell,et al.  Normal and mutant thermotaxis in the nematode Caenorhabditis elegans. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[4]  S. Brenner,et al.  The structure of the ventral nerve cord of Caenorhabditis elegans. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[5]  L. Byerly,et al.  The life cycle of the nematode Caenorhabditis elegans. I. Wild-type growth and reproduction. , 1976, Developmental biology.

[6]  A. Stretton,et al.  Identification of excitatory and inhibitory motoneurons in the nematode Ascaris by electrophysiological techniques , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[7]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[8]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[9]  R. Davis,et al.  Passive membrane properties of motorneurons and their role in long- distance signaling in the nematode Ascaris , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  R. Hosono [The nervous system of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[11]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[12]  C. H. Rankin,et al.  Caenorhabditis elegans: A new model system for the study of learning and memory , 1990, Behavioural Brain Research.

[13]  Cori Bargmann,et al.  Chemosensory neurons with overlapping functions direct chemotaxis to multiple chemicals in C. elegans , 1991, Neuron.

[14]  DH Hall,et al.  The posterior nervous system of the nematode Caenorhabditis elegans: serial reconstruction of identified neurons and complete pattern of synaptic interactions , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  P. Erdös,et al.  Theory of the locomotion of nematodes: Dynamics of undulatory progression on a surface. , 1991, Biophysical journal.

[16]  Randall D. Beer,et al.  Evolving Dynamical Neural Networks for Adaptive Behavior , 1992, Adapt. Behav..

[17]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[18]  Cori Bargmann Genetic and cellular analysis of behavior in C. elegans. , 1993, Annual review of neuroscience.

[19]  C. Blakemore,et al.  Analysis of connectivity in the cat cerebral cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[21]  Shawn R. Lockery,et al.  Neural Network Models of Chemotaxis in the Nematode Caenorhabditis Elegans , 1996, NIPS.

[22]  S. R. Wicks,et al.  A Dynamic Network Simulation of the Nematode Tap Withdrawal Circuit: Predictions Concerning Synaptic Function Using Behavioral Criteria , 1996, The Journal of Neuroscience.

[23]  D. van der Kooy,et al.  Mutations that prevent associative learning in C. elegans. , 1997, Behavioral neuroscience.

[24]  Inman Harvey,et al.  Evolutionary robotics: the Sussex approach , 1997, Robotics Auton. Syst..

[25]  David B. Fogel,et al.  Evolutionary algorithms in theory and practice , 1997, Complex.

[26]  Randall D. Beer,et al.  The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment , 1997, Trends in Neurosciences.

[27]  S. Lockery,et al.  Active Currents Regulate Sensitivity and Dynamic Range in C. elegans Neurons , 1998, Neuron.

[28]  I. Mori Genetics of chemotaxis and thermotaxis in the nematode Caenorhabditis elegans. , 1999, Annual review of genetics.

[29]  Thomas M. Morse,et al.  The Fundamental Role of Pirouettes in Caenorhabditis elegans Chemotaxis , 1999, The Journal of Neuroscience.

[30]  Yasuhiro Funabashi,et al.  Geometrical structure of the neuronal network of Caenorhabditis elegans , 2001 .

[31]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[32]  M. Yamamoto,et al.  Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. , 2001, The Journal of experimental biology.

[33]  C. Rankin,et al.  Analyses of habituation in Caenorhabditis elegans. , 2001, Learning & memory.

[34]  P. Cosman,et al.  Using machine vision to analyze and classify Caenorhabditis elegans behavioral phenotypes quantitatively , 2002, Journal of Neuroscience Methods.

[35]  Cori Bargmann,et al.  Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli , 2002, Nature.

[36]  O. Hobert Behavioral plasticity in C. elegans: paradigms, circuits, genes. , 2003, Journal of neurobiology.

[37]  Olaf Sporns,et al.  Graph Theory Methods for the Analysis of Neural Connectivity Patterns , 2003 .

[38]  Shawn R. Lockery,et al.  Computational Rules for Chemotaxis in the Nematode C. elegans , 1999, Journal of Computational Neuroscience.

[39]  O. Sporns,et al.  Motifs in Brain Networks , 2004, PLoS biology.

[40]  S. W. Emmons,et al.  Mate Searching in Caenorhabditis elegans: A Genetic Model for Sex Drive in a Simple Invertebrate , 2004, The Journal of Neuroscience.

[41]  R. Shingai,et al.  Neural network model to generate head swing in locomotion of Caenorhabditis elegans , 2004, Network.

[42]  John S. Conery,et al.  A Neural Network Model of Chemotaxis Predicts Functions of Synaptic Connections in the Nematode Caenorhabditis elegans , 2004, Journal of Computational Neuroscience.

[43]  Sen Song,et al.  Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits , 2005, PLoS biology.

[44]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[45]  M. de Bono,et al.  Neuronal substrates of complex behaviors in C. elegans. , 2005, Annual review of neuroscience.

[46]  Cori Bargmann,et al.  A circuit for navigation in Caenorhabditis elegans , 2005 .

[47]  E. Bamberg,et al.  Light Activation of Channelrhodopsin-2 in Excitable Cells of Caenorhabditis elegans Triggers Rapid Behavioral Responses , 2005, Current Biology.

[48]  S. Lockery,et al.  Analysis of the effects of turning bias on chemotaxis in C. elegans , 2005, Journal of Experimental Biology.

[49]  David M. Miller,et al.  Computational inference of the molecular logic for synaptic connectivity in C. elegans , 2006, ISMB.

[50]  Huayue Ye,et al.  Learning and learning choice in the nematode Caenorhabditis elegans. , 2006, Neuroscience bulletin.

[51]  S. Lockery,et al.  The awake behaving worm: simultaneous imaging of neuronal activity and behavior in intact animals at millimeter scale. , 2006, Journal of neurophysiology.

[52]  Christopher J Cronin,et al.  Automated imaging of C. elegans behavior. , 2006, Methods in molecular biology.

[53]  R. Shingai,et al.  Computer-driven automatic identification of locomotion states in Caenorhabditis elegans , 2006, Journal of Neuroscience Methods.

[54]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[55]  Cori Bargmann Chemosensation in C. elegans. , 2006, WormBook : the online review of C. elegans biology.

[56]  Todd R. Gruninger,et al.  Integration of Male Mating and Feeding Behaviors in Caenorhabditis elegans , 2006, The Journal of Neuroscience.

[57]  Cori Bargmann,et al.  Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans , 2007, Nature Methods.

[58]  Alan C. Evans,et al.  Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. , 2007, Cerebral cortex.

[59]  Qiang Liu,et al.  UNC-1 Regulates Gap Junctions Important to Locomotion in C. elegans , 2007, Current Biology.

[60]  N A Dunn,et al.  Circuit motifs for spatial orientation behaviors identified by neural network optimization. , 2007, Journal of neurophysiology.

[61]  Olaf Sporns,et al.  The small world of the cerebral cortex , 2007, Neuroinformatics.

[62]  Feng Zhang,et al.  Multimodal fast optical interrogation of neural circuitry , 2007, Nature.

[63]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[64]  Lester Melie-García,et al.  Characterizing brain anatomical connections using diffusion weighted MRI and graph theory , 2007, NeuroImage.

[65]  S. Lockery,et al.  Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis , 2008, Nature.

[66]  A. V. Maricq,et al.  Action potentials contribute to neuronal signaling in C. elegans , 2008, Nature Neuroscience.

[67]  L. Abbott,et al.  Theoretical Neuroscience Rising , 2008, Neuron.

[68]  Lester Melie-García,et al.  Studying the human brain anatomical network via diffusion-weighted MRI and Graph Theory , 2008, NeuroImage.

[69]  David H. Hall,et al.  C. elegans Atlas , 2008 .

[70]  Dmitri B Chklovskii,et al.  A cost-benefit analysis of neuronal morphology. , 2008, Journal of neurophysiology.

[71]  T. Wakabayashi,et al.  Modulation of Caenorhabditis elegans chemotaxis by cultivation and assay temperatures , 2008, Neuroscience Research.

[72]  S. Lockery,et al.  The Neural Network for Chemotaxis to Tastants in Caenorhabditis elegans Is Specialized for Temporal Differentiation , 2009, The Journal of Neuroscience.

[73]  Kazushi Yoshida,et al.  Parallel Use of Two Behavioral Mechanisms for Chemotaxis in Caenorhabditis elegans , 2009, The Journal of Neuroscience.

[74]  T. Stankowich Behavior , 2009, The Quarterly Review of Biology.

[75]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[76]  Aravinthan D. T. Samuel,et al.  Caenorhabditis elegans: a model system for systems neuroscience , 2009, Current Opinion in Neurobiology.

[77]  Yoram Louzoun,et al.  Random distance dependent attachment as a model for neural network generation in the Caenorhabditis elegans , 2010, Bioinform..

[78]  S. Lockery,et al.  Evolution and Analysis of Minimal Neural Circuits for Klinotaxis in Caenorhabditis elegans , 2010, The Journal of Neuroscience.

[79]  Kevin L. Briggman,et al.  Wiring specificity in the direction-selectivity circuit of the retina , 2011, Nature.

[80]  Arthur W. Wetzel,et al.  Network anatomy and in vivo physiology of visual cortical neurons , 2011, Nature.

[81]  Bryn E. Gaertner,et al.  Microfluidic Devices for Analysis of Spatial Orientation Behaviors in Semi-Restrained Caenorhabditis elegans , 2011, PloS one.

[82]  Rex A. Kerr,et al.  High-Throughput Behavioral Analysis in C. elegans , 2011, Nature Methods.

[83]  C. Adami,et al.  Colored Motifs Reveal Computational Building Blocks in the C. elegans Brain , 2010, PloS one.

[84]  Michael J. O'Donovan,et al.  A Perimotor Framework Reveals Functional Segmentation in the Motoneuronal Network Controlling Locomotion in Caenorhabditis elegans , 2011, The Journal of Neuroscience.

[85]  M. Gazzaniga,et al.  Understanding complexity in the human brain , 2011, Trends in Cognitive Sciences.

[86]  E. Marder,et al.  Multiple models to capture the variability in biological neurons and networks , 2011, Nature Neuroscience.

[87]  Lav R. Varshney,et al.  Structural Properties of the Caenorhabditis elegans Neuronal Network , 2009, PLoS Comput. Biol..

[88]  S. Lockery,et al.  Optogenetic analysis of synaptic transmission in the central nervous system of the nematode Caenorhabditis elegans. , 2011, Nature communications.

[89]  Steffen Prohaska,et al.  Large-Scale Automated Histology in the Pursuit of Connectomes , 2011, The Journal of Neuroscience.

[90]  S. Lockery,et al.  An Image-Free Opto-Mechanical System for Creating Virtual Environments and Imaging Neuronal Activity in Freely Moving Caenorhabditis elegans , 2011, PloS one.

[91]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[92]  Olaf Sporns,et al.  From simple graphs to the connectome: Networks in neuroimaging , 2012, NeuroImage.

[93]  Jordan H. Boyle,et al.  Gait Modulation in C. elegans: An Integrated Neuromechanical Model , 2012, Front. Comput. Neurosci..

[94]  Zengcai V. Guo,et al.  Controlling interneuron activity in Caenorhabditis elegans to evoke chemotactic behavior , 2012, Nature.

[95]  M. Hendricks,et al.  Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement , 2012, Nature.

[96]  Christopher J. Lee Open Peer Review by a Selected-Papers Network , 2011, Front. Comput. Neurosci..

[97]  Xingming Zhao,et al.  Computational Systems Biology , 2013, TheScientificWorldJournal.